



# Summary of Last Lecture

# Theorem

the axioms (with state neutrality) are satisfied if and only if there exists a (state-independent) utility function u and a conditional-probability function p such that

1 
$$\max_{x \in X} u(x, t) = 1$$
 and  $\min_{x \in X} u(x, t) = 0$ 

2 
$$p(R|T) = p(R|S)p(S|T) \forall R, S, T$$
 so that  $R \subseteq S \subseteq T$  and  $S \neq \emptyset$ 

3  $f \succeq_S g$  if and only if  $E_p(u(f)|S) \ge E_p(u(g)|S)$ 

# Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, Bayesian games, Nash equilibrium

two-person zero-sum games, Bayesian equilibrium, sequential equilibria of extensive-form games, computing Nash equilibria, sub-game-perfect equilibria

efficient computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

### GM (Institute of Computer Science @ UIBK) Domination

Game Theory

42/78

# <section-header> Domination Question how to find conditional-probability functions? Answer game theory or dominated strategies Deparation a decision-maker has an utility function u: X × Ω → ℝ e. interpret X as the set of possible decisions decision-maker can choose any x ∈ X let p(t) = p(t|Ω), y ∈ X is good decision if: ∑p(t) · u(y, t) ≥ ∑p(t) · u(x, t) ∀x ∈ X

## Definition

a set of vectors S is convex if for any two vectors p, q also  $\lambda p + (1 - \lambda)q \in S$ ; generalise to functions in the standard way

## Theorem

given  $u: X \times \Omega \to \mathbb{R}$  and  $y \in X$ , then the set of all probabilities  $p \in \Delta(\Omega)$  such that y is optimal is convex

# Proof

- suppose y is optimal for decision-maker with beliefs p and q
- $\lambda \in [0,1], r = \lambda p + (1 \lambda)q$

$$\sum_{t \in \Omega} r(t) \cdot u(y, t) \ge \lambda \sum_{t \in \Omega} p(t)u(y, t) + (1 - \lambda) \sum_{t \in \Omega} q(t)u(y, t)$$
$$\ge \lambda \sum_{t \in \Omega} p(t)u(x, t) + (1 - \lambda) \sum_{t \in \Omega} q(t)u(x, t)$$
$$= \sum_{t \in \Omega} r(t) \cdot u(x, t)$$

Game Theor

GM (Institute of Computer Science @ UIBK Domination

### Example

let  $X = \{\alpha, \beta, \gamma\}$ , let  $\Omega = \{\Theta_1, \Theta_2\}$ •  $p(\Theta_1) = 1 - p(\Theta_2)$ 

| $\Theta_1$ | $\Theta_2$                    |
|------------|-------------------------------|
| 8          | 1                             |
| 5          | 3                             |
| 4          | 7                             |
|            | Θ <sub>1</sub><br>8<br>5<br>4 |

•  $\alpha$  optimal if

 $\begin{aligned} & 8p(\Theta_1) + 1(1 - p(\Theta_1)) \geqslant 5p(\Theta_1) + 3(1 - p(\Theta_1)) \\ & 8p(\Theta_1) + 1(1 - p(\Theta_1)) \geqslant 4p(\Theta_1) + 7(1 - p(\Theta_1)) \end{aligned}$ 

- hence  $\alpha$  is optimal iff  $p(\Theta_1) \ge 0.6$
- similar for  $\gamma$ :  $p(\Theta_1) \leq 0.6$
- but  $\beta$  is never optimal

### Definition

a decision option that can never be optimal is called strongly dominated

# Definition

# randomised strategy

strongly dominated

- a strategy is any probability distribution over decision options X
- notation:  $\sigma = (\sigma(x))_{x \in X}$ ,  $\sigma(x) \in \Delta(X)$

# Definition

## strongly dominated

an option  $y \in X$  is strongly dominated by a randomised strategy  $\sigma$  if

$$\sum_{x\in X}\sigma(x)u(x,t)>u(y,t)\qquad orall t\in\Omega$$

# Theorem

both notions of strongly domination are equivalent

# Proof

use optimisation results on linear programming problems, more precisely the duality theorem

Game Theory

GM (Institute of Computer Science @ UIBK) Games in Extensive Form

# Games in Extensive Form

# Example

- player 1 and 2 put 1€ in a pot
- player 1 draws a card, which is either red or black
- player 1 looks at this card in private and can either raise or pass
- if player 1 passes, then she shows the card
  - if the card is red, then player 1 wins the pot
  - if the card is black, then player 2 wins the pot
- if player 1 raises, she adds another euro
- player 2 can meet or fold
  - if player 2 folds the game ends and player 1 wins the pot
  - if player 2 meets she has to add  $1 \in$
- the games continues as above



# Definition

- node 0 is a chance node
- nodes 1,2 are decision nodes
- the path representing the actual events is called path of play



1 the player label

GM (Institute of Computer Science @ UIBK)

2 the information label

the two nodes are controlled by the same player in the same information state

# n-Person Extensive-Form Game

# Definition

an *n*-person extensive-form game  $\Gamma^e$  is a labelled tree, where also edges are labelled such that

- 1 each nonterminal node has player label in  $\{0, 1, ..., n\}$ nodes labelled with 0 are called chance nodes nodes labelled within  $\{1, ..., n\}$  are called decision nodes
- **2** edges leaving chance nodes (also called **alternatives**) are labelled with probabilities that sum up to 1
- **3** player nodes have a second label, the information label reflecting the information state
- 4 each alternative at a player node has a move label
- **5** each terminal node is labelled with  $(u_1, \ldots, u_n)$ , the payoff

Game Theory

### GM (Institute of Computer Science @ UIBK) Games in Extensive Form

```
6 \forall player i,
```

- $\forall$  nodes x y z controlled by *i*,
- $\forall$  alternatives *b* at *x* 
  - suppose y and z have the same information state
     y follows x and b
  - ∃ node w, ∃ alternative c at w such that z follows w and c
  - and w is controlled by player i
     w has the same information label as x
     c has the same move label as b

# Question

what does the last condition mean?

# Answer

it asserts perfect recall: whenever a player moves, she remembers all the information she knew earlier

# No Perfect Recall



# Perfect Information Games

# Definition

if no two nodes have the same information state, we say the game has perfect information

# Definition

### strategy

- $S_i$  is the set of information states per player *i*
- $D_s$  is the set of possible moves at  $s \in S_i$
- the set of strategies for player *i* is

$$\prod_{s \in S_i} D_s = \underbrace{D_s \times D_s \times \cdots \times D_s}_{S_i \text{-times}}$$

# Example

the set of strategies for player 1 can be represented as

 $\{Rr, Rp, Pr, Pp\}$ 

Game Theory

# Influencing Your Opponent



# Strategic-Form Games

# Definition

a strategic-form game is a tuple  $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$  such that

- **1** *N* is the set of players
- **2** for each *i*:  $C_i$  is the set of strategies of player *i*
- **3** for each *i*:  $u_i$ :  $\prod_{i \in N} C_i \to \mathbb{R}$  is the expected utility payoff

a strategic-form game is finite if N and each  $C_i$  is finite

# Example

consider the card game, suppose player 1 plans to use strategy Rp and player 2 plans to use  ${\cal M}$ 

$$u_1(Rp, M) = 2 \cdot \frac{1}{2} + -1 \cdot \frac{1}{2} = 0.5$$
  
 $u_2(Rp, M) = -2 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = -0.5$ 

GM (Institute of Computer Science @ UIBK) Strategic-Form <u>Games</u>

# Definition

given a game  $\Gamma^e$  in extensive form, we define the normal representation as strategic-form game  $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$ :

Game Theory

- **1**  $N = \{1, \ldots, n\}$ , if  $\Gamma^e$  is an *n*-person game
- **2** for each *i*:  $C_i$  denotes the strategies of each player as defined above

**3** we define the expected utility payoff  $u_i$ 

• set 
$$C = \prod_{i \in N} C_i$$

• let x be a node in  $\Gamma^e$ 

- let  $c \in C$  denote a given strategy profile
- let P(x|c) denotes the probability that the path of play goes through x, if c is chosen
- let  $\Omega^*$  denote the set of all terminal nodes
- for  $x \in \Omega^*$ ,  $w_i(x)$  denotes the payoff for player i

• set

$$u_i(c) = \sum_{x \in \Omega^*} P(x|c)w_i(x)$$

### Example (2,-2 meet Raise 1.a 2.<mark>0</mark> Pass fold 0.5 (1, -1)(1,-1) 0 0.5 -2,2 meet raise 2.<mark>0</mark> 1.b pass fold (-1,1)(1,-1 Normal Representation *C*<sub>2</sub> M F $C_1$ Rr 0,0 1, -1Rp 0.5, -0.50,0 Pr -0.5, 0.51, -10,0 Pр 0,0

GM (Institute of Computer Science @ UIBK)

Game Theory