

Summary of Last Lecture

Definition

an *n*-person extensive-form game Γ^e is a labelled tree, where also edges are labelled such that

- 1 each nonterminal node has player label in $\{0, 1, ..., n\}$ nodes labelled with 0 are called chance nodes nodes labelled within $\{1, ..., n\}$ are called decision nodes
- **2** edges leaving chance nodes (also called alternatives) are labelled with probabilities that sum up to 1
- 3 player nodes have a second label, the information label reflecting the information state
- 4 each alternative at a player node has a move label
- **5** each terminal node is labelled with (u_1, \ldots, u_n) , the payoff

6 \forall player *i*,

- \forall nodes x y z controlled by *i*,
- \forall alternative *b* at *x*
 - suppose y and z have the same information state y is reachable from x and b
 - ∃ node w, ∃ alternative c at w such that z follows w and c
 - and w is controlled by player i
 w has the same information label as x
 c has the same move label as b

Recall

the last assertion expresses perfect recall: whenever a player moves, she remembers all the information she knew earlier

Game Theory

GM (Institute of Computer Science @ UIBK)

Strategies of Players Definition

- S_i is the set of information states per player i
- D_s is the set of possible moves at $s \in S_i$
- the set of strategies for player *i* is

$$\prod_{s \in S_i} D_s = \underbrace{D_s \times D_s \times \cdots \times D_s}_{|S_i| \text{-times}}$$

Example

- consider the simple card game and the strategies of player 1
- player 1 has two information states
- and each time two alternatives: Pass, Raise, or pass, raise.
- thus the set of strategies for player 1 can be represented as

 $\{(R,r), (R,p), (P,r), (P,p)\}$ (or shorter $\{Rr, Rp, Pr, Pp\}$

strategy

23/45

Normal Representation

given a game Γ^e in extensive form, we define the normal representation as strategic-form game $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$:

- 1 $N = \{1, \ldots, n\}$, if Γ^e is an *n*-person game
- **2** for each *i*: C_i denotes the strategies of each player as defined above

3 we define the expected utility payoff u_i

• set
$$C = \prod_{i \in N} C_i$$

- let x be a node in Γ^e
- let $c \in C$ denote a given strategy profile
- let P(x|c) denotes the probability that the path of play goes through x, if c is chosen
- let Ω^* denote the set of all terminal nodes
- for $x \in \Omega^*$, $w_i(x)$ denotes the payoff for player i

Game Theory

```
• set
```

$$u_i(c) = \sum_{x \in \Omega^*} P(x|c)w_i(x)$$

GM (Institute of Computer Science @ UIBK) Content

Content

motivation, introduction to decision theory, decision theory

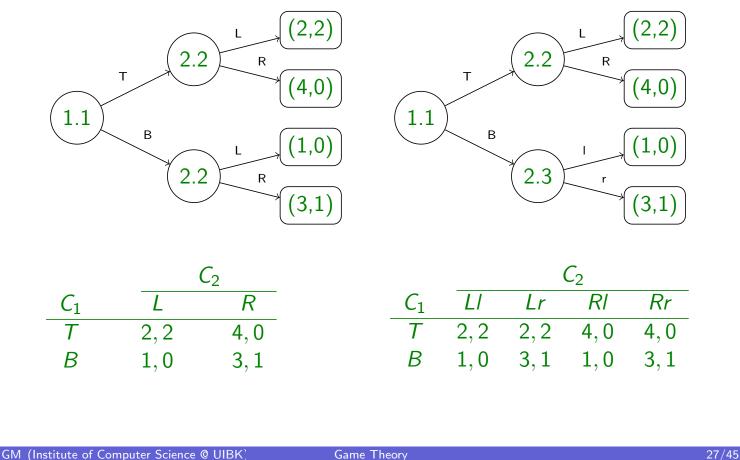
basic model of game theory, dominated strategies, Bayesian games

equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two-player games

refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

25/45

More Examples



Equivalence of Strategic-Form Games

Game Theory

Equivalence of Strategic-Form Games

Definition

games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, $\Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if

- \forall players *i*, \exists numbers A_i and B_i
- such that $A_i > 0$
- and $u'_i(c) = A_i u_i(c) + B_i$ for any $c \in C = \prod C_i$

Example		C_2			C_2	
	C_1	<i>x</i> ₂	<i>y</i> ₂	C_1	<i>x</i> ₂	<i>y</i> ₂
	<i>x</i> ₁	9,9	0,8	<i>x</i> ₁	1, 1	0,0
	<i>Y</i> 1	8,0	7,7	y_1	0,0	7,7

not fully equivalent, as (x_1, x_2) is better than (y_1, y_2) in the first game, but not in the second

Equivalence of Strategic-Form Games

let $C_{-i} = \prod_{j \in N \setminus \{i\}} C_j$; let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$

• for any set Z and any $f: Z \to \mathbb{R}$, define

$$\operatorname{argmax}_{y \in Z} f(y) = \{ y \in Z \mid f(y) = \max_{z \in Z} f(z) \}$$

• let $\eta \in \Delta(\mathcal{C}_{-i}) = \{q \colon \mathcal{C}_{-i} \to \mathbb{R} \mid \sum_{e_{-i} \in \mathcal{C}_{-i}} q(e_{-i}) = 1\}$

Definition

best response

29/45

player *i* best response to η is

$$\operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i}) \boldsymbol{u}_i(e_{-i}, d_i)$$

Definition

best response equivalence

games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are best-response equivalent if (for all η)

$$\operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i}) \boldsymbol{u}_i(e_{-i}, d_i) = \operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i}) \boldsymbol{u}'_i(e_{-i}, d_i)$$

GM (Institute of Computer Science @ UIBK Equivalence of Strategic-Form Games

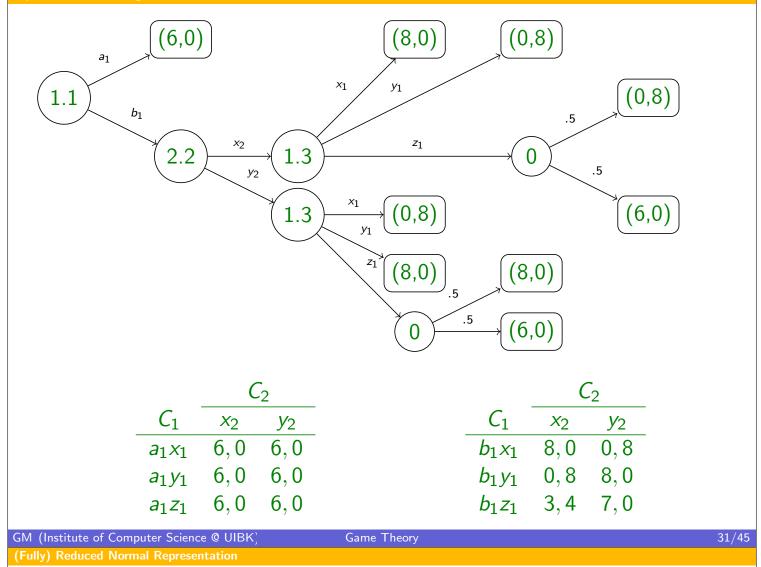
Example	C_2		C_2			
	C_1	<i>x</i> ₂	<i>y</i> ₂	C_1	<i>x</i> ₂	<i>y</i> ₂
	<i>x</i> ₁	9,9	0,8	<i>x</i> ₁	1, 1	0,0
	<i>Y</i> 1	8,0	7,7	<i>y</i> ₁	0,0	7,7

player 1

- set $\eta(x_2) = \frac{1}{2}$, $\eta(y_2) = \frac{1}{2}$
- $\operatorname{argmax}_{d \in \{x_1, y_1\}} \frac{1}{2}u_1(d, x_2) + \frac{1}{2}u_1(d, y_2) = \operatorname{argmax}_{d \in \{x_1, y_1\}} \frac{1}{2}u_1'(d, x_2) + \frac{1}{2}u_1'(d, y_2)$

- set $\eta(x_1) = \frac{1}{2}$, $\eta(y_1) = \frac{1}{2}$
- $\operatorname{argmax}_{d \in \{x_2, y_2\}} \frac{1}{2}u_2(x_1, d) + \frac{1}{2}u_2(y_1, d) = \operatorname{argmax}_{d \in \{x_2, y_2\}} \frac{1}{2}u_1'(x_1, d) + \frac{1}{2}u_1'(y_1, d)$

Example (cont'd) the games are best-response equivalent: as long as $\eta(y_i) \ge \frac{1}{8}$ the player's choose y_i , otherwise x_i Equivalence of Strategic-Form Games



(Fully) Reduced Normal Representation

Definition

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i and e_i in C_i , are payoff equivalent if $u_j(c_{-i}, d_i) = u_j(c_{-i}, e_i)$ for all $c_{-i} \in C_{-i}$, $j \in N$

Example

strategies a_1x_1 , a_1y_1 , a_1z_1 are payoff equivalent

Definition purely reduced normal representation identifying payoff equivalent strategies yields the purely reduced normal representation

Example

	C_2			
C_1	<i>x</i> ₂	<i>y</i> 2		
$a_1\cdot$	6,0	6,0		
$b_1 x_1$	8,0	0,8		
b_1y_1	0,8	8,0		
$b_1 z_1$	3,4	7,0		

Definition

a randomised strategy σ_i is any probability distribution over C_i (denoted $\Delta(C_i)$); i.e., $\sigma(c_i)$ denotes the probability that *i* choses strategy c_i

Definition

a strategey d_i is randomly redundant if $\exists \sigma_i \in \Delta(C_i)$ such that $\sigma_i(d_i) = 0$

$$u_j(c_{-i}, d_i) = \sum_{e_i \in C_i} \sigma_i(e_i) u_j(c_{-i}, e_i) \quad \text{for all } c_{-i} \in C_{-i}, j \in N$$

Example

consider the randomised strategy $\sigma_1 = .5[a_1 \cdot] + .5[b_1 y_1]$ of player 1

- against x_2 : .5(6,0) + .5(0,8) = (3,4)
- against y_2 : .5(6,0) + .5(8,0) = (7,0)

strategy a_1z_1 is payoff equvialent to σ_1

Definition fully reduced normal representation fully reduced normal representation is obtained if all randomly redundant strategies are removed

Game Theory

GM (Institute of Computer Science @ UIBK) Elimination of Dominated Strategies

Definition

strongly dominated

residual game

33/45

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is strongly dominated for player i, if \exists randomised strategy $\sigma_i \in \Delta(C_i)$ such that

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \quad \text{for all } c_{-i} \in C_{-i}$$

Definition

- let $\Gamma^{(0)} = (N, (C_i)_{i \in N}, (u_i)_{i \in N}) := \Gamma$
- let $\Gamma^{(k)} = (N, (C_i^{(k)})_{i \in N}, (u_i)_{i \in N})$, such that $C_i^{(k)}$ denotes the set of all strategies in $C_i^{(k-1)}$ not strongly dominated in $\Gamma^{(k-1)}$
- clearly $C_i \supseteq C_i^{(1)} \supseteq C_i^{(2)} \supseteq \cdots \supseteq C_i^{(n)} = C_i^{(n+1)}$ as $C_i^{(n)}$ cannot become empty, but is finite
- define $\Gamma^{(\infty)} = \Gamma^{(n)}$
- the strategies $C_i^{(\infty)}$ are called iteratively undominated
- $\Gamma^{(\infty)}$ is the residual game

Example

in the card game, strategy Pp is strongly dominated by $\frac{1}{2}[Rr] + \frac{1}{2}[Rp]$

Example

consider

		C_2	
C_1	<i>x</i> ₂	<i>y</i> ₂	<i>z</i> ₂
a_1	2,3	3,0	0, 1
b_1	0,0	1, 6	4,2

the residual game consists of strategy a_1 and x_2

Definition

weakly dominated

35/45

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is weakly dominated for player *i*, if \exists randomised strategy $\sigma_i \in \Delta(C_i)$ such that

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) \geqslant u_i(c_{-i}, d_i) \quad \text{for all } c_{-i} \in C_{-i}$$

and
$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \quad \text{for at least on } c_{-i} \in C_{-i}$$

A (Institute of Computer Science @ UIBK) Game Theory

GM (Institute of Computer Science @ UIBK)