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Summary of Last Lecture

an n-person extensive-form game '€ is a labelled tree, where also edges are

each nonterminal node has player label in {0,1,..., n}
nodes labelled with 0 are called chance nodes
nodes labelled within {1,...,n} are called decision nodes

edges leaving chance nodes (also called alternatives)
are labelled with probabilities that sum up to 1

player nodes have a second label, the information label
reflecting the information state

each alternative at a player node has a move label

each terminal node is labelled with (uy, ...

mputational

, Up), the payoff
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@ V player i,
V nodes x y z controlled by 1/,
V alternative b at x
e suppose y and z have the same information state
y is reachable from x and b

e - node w, J alternative ¢ at w
such that z follows w and ¢

e and w is controlled by player i
w has the same information label as x
¢ has the same move label as b

Recall

the last assertion expresses perfect recall: whenever a player moves, she
remembers all the information she knew earlier
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Strategies of Players
Definition strategy
e S, is the set of information states per player i

e D, is the set of possible moves at s € 5;

e the set of strategies for player i is

[] Ds =Ds x Ds x - x D

seS;

|S;|-times

Example
consider the simple card game and the strategies of player 1

player 1 has two information states

and each time two alternatives: Pass, Raise, or pass, raise.

thus the set of strategies for player 1 can be represented as

{(R,r),(R,p),(P,r),(P,p)} (or shorter {Rr, Rp, Pr, Pp}

GM (Institute of Computer Science @ UIBK’ Game Theory




Normal Representation
given a game [ € in extensive form, we define the normal representation as
strategic-form game ' = (N, (C;)ien, (Uj)ien):

N ={1,...,n}, if [¢is an n-person game
for each i: C; denotes the strategies of each player as defined above

we define the expected utility payoff u;
o set C=][;cy G
e let x be anodein €
e let c € C denote a given strategy profile

e let P(x|c) denotes the probability that the path of play goes
through x, if ¢ is chosen

o let 2* denote the set of all terminal nodes
o for x € Q*, wj(x) denotes the payoff for player i
e set

ui(c) = Z P(x|c)w;(x)

xEQ*
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Content

motivation, introduction to decision theory, decision theory
basic model of game theory, dominated strategies, Bayesian games

equilibria of strategic-form games, evolution, resistance, and risk
dominance, sequential equilibria of extensive-form games, subgame-perfect
equilibria, complexity of finding Nash equilibria, equilibrium computation
for two-player games

refinements of equilibrium in strategic form, persistent equilibria, games
with communication, sender-receiver games
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More Examples

C2 C2
C1 L R CG: Ll Lr RI Rr
T 2,2 4.0 T 22 22 40 40
B 1,0 3.1 B 1,0 31 1,0 3,1
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Equivalence of Strategic-Form Games

Definition
games [ = (N, (C,'),'e/\/, (u,'),'e/\/), M = (/V, (Ci)i€N7 (u;);e/\/) are fuIIy
equivalent if

e V players i, 4 numbers A; and B;

e such that A; > 0

e and ui(c) = Ajui(c)+ Bi forany ce C =] G

Example &: &:
G x w» G x w»
x1 9.9 0,8 x. 1.1 00
yi1 8,0 7,7 yi 0,0 7,7

not fully equivalent, as (xi, x2) is better than (y1, y») in the first game, but
not in the second
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let C_j = ]ljemyiy G let (e—j, di) denote a strategy profile, such that

e_;e C_;and d; € G
e for any set Z and any f: Z — R, define

argmax, - zf(y) ={y € Z | f(y) = max f(z)}

elet e AC ) ={q: C, = R|Y, o qles)=1)

Definition best response
player i best response to 7 is

argmaXxy.cc; Z n(e—i)ui(e—i, d;)
e_;eC_;

Definition best response equivalence

games I' = (N, (G)ien, (ui)ien), T = (N, (G)ien, (u)ien) are
best-response equivalent if (for all n)

argmaxgec, > n(eiuiei, di) = argmaxgee, Y nle—i)u'i(e—i, d;)
e_jeC_; e_jeC_;
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Example &: &:
G x w» Gt x2 w
x. 9.9 0.8 x1 1,1 0.0
Y1 8,0 7,7 Y1 0,0 7,7
player 1 player 2
o set 1)(x2) = 3, 1(y2) = 3 o set 1)(x1) = 3, n(y1) = 3
® ArgMaXge(x .y} Tui(d, ) + ® ArgMaXgc(x,.y,}) Tun(x1, d) +
%ul(dayZ) — %UZ(yla d) —
ArgMaXxyey v} Tui(d, ) + argmaXx ey, 1,1 Tul(x1, d) +
%ull(dvy2) %ull()/b d)

Example (cont'd)
the games are best-response equivalent:
as long as n(y;) > % the player's choose y;, otherwise x;
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G x  y G x w
d1 X1 6,0 6,0 b1X1 8,0 0,8
aiyi 6,0 6,0 b1y1 0,8 8,0
di12i 6,0 6,0 b121 3,4 7,0
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(Fully) Reduced Normal Representation

Definition

let ' = (N, (Ci)ien, (uj)ien), we say d; and e; in C;, are payoff equivalent if
ui(c_j, di) = uj(c_j,e;) forallc_;je C_;,jeN

Example
strategies aixi, aiyi1, a1z1 are payoff equivalent

Definition purely reduced normal representation
identifying payoff equivalent strategies yields the purely reduced normal
representation

Example @
G x
a- 6,0 6,0
b1X1 8, 0 0, 38
b1y1 0, 38 8, 0

b121 3,4 7,0
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Definition
a randomised strategy o; is any probability distribution over C; (denoted
A(C;)); i.e., o(ci) denotes the probability that i choses strategy c;
Definition
a strategey d; is randomly redundant if 3 o; € A(C;) such that oi(d;) =0
Uj(C_,',d,') = Z a,-(e,-)uj(c_,-,e,-) forall c_; € C_;, jeN
eiGCi
Example
consider the randomised strategy o1 = .5[a1-| + .5[b1y1] of player 1
e against xp: .5(6,0) + .5(0,8) = (3,4)
e against y»: .5(6,0) + .5(8,0) = (7,0)

strategy aj;z; is payoff equvialent to o3

Definition fully reduced normal representation
fully reduced normal representation is obtained if all randomly redundant
strategies are removed
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Definition strongly dominated
let I = (N, (Ci)ien, (ui)ien), we say d; is strongly dominated for player i,
if 3 randomised strategy o; € A(C;) such that

Z a,-(e,-)u,-(c_,-, e,-) > u,-(c_,-, d,') forall c_; € C_;
e,-EC,-

Definition residual game

o let IO = (N, (Gien, (ui)ien) =T

o let 1K) = (N, (C,-(k)),-e,v, (uj)ien), such that C,-(k) denotes the set of
all strategies in Ci(k_l) not strongly dominated in [(k—1)

o clearly C; O Cl.(l) D CI.(2) D...D CI_(”) _ Ci(n+1)
as Ci(") cannot become empty, but is finite

o define () = (")

e the strategies Ci(oo) are called iteratively undominated

o (%) is the residual game
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Example
in the card game, strategy Pp is strongly dominated by %[Rr] - %[Rp]

Example
consider
G
GG x y
ag 2,3 3,0 0,1
by 0,0 1.6 4,72

the residual game consists of strategy a; and xo

Definition weakly dominated
let T = (N, (C))ien, (uj)ien), we say d; is weakly dominated for player i, if
3 randomised strategy o; € A(C;) such that

Z U,'(e,')u,'(C_,', e,-)}u,-(c_,-, d,') for all c_; € C_;
e,'EC,'
and

Z oi(ej)ui(c_j, e)>ui(c_j, d;) for at least on c_; € C_;

e €C;
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