

Game Theory

Georg Moser

Institute of Computer Science @ UIBK

Winter 2009

Game Theory

Summary of Last Lecture

Definition

an *n*-person extensive-form game Γ^e is a labelled tree, where also edges are labelled such that

- **1** each nonterminal node has player label in $\{0, 1, ..., n\}$ nodes labelled with 0 are called chance nodes nodes labelled within $\{1, ..., n\}$ are called decision nodes
- **2** edges leaving chance nodes (also called alternatives) are labelled with probabilities that sum up to 1
- **3** player nodes have a second label, the information label reflecting the information state
- 4 each alternative at a player node has a move label
- **5** each terminal node is labelled with (u_1, \ldots, u_n) , the payoff

Game Theor

6 \forall player *i*,

 \forall nodes x y z controlled by *i*,

 \forall alternative *b* at *x*

- suppose y and z have the same information state y is reachable from x and b
- ∃ node w, ∃ alternative c at w such that z follows w and c
- and w is controlled by player i
 w has the same information label as x
 c has the same move label as b

Recall

the last assertion expresses perfect recall: whenever a player moves, she remembers all the information she knew earlier

Strategies of Players Definition

GM (Institute of Computer Science @ UIBK)

- S_i is the set of information states per player i
- D_s is the set of possible moves at $s \in S_i$
- the set of strategies for player *i* is

$$\prod_{i \in S_i} D_s = \underbrace{D_s \times D_s \times \cdots \times D_s}_{|S_i| \text{-times}}$$

Example

- consider the simple card game and the strategies of player $\boldsymbol{1}$
- player 1 has two information states
- and each time two alternatives: Pass, Raise, or pass, raise.
- $\bullet\,$ thus the set of strategies for player 1 can be represented as

 $\{(R,r), (R,p), (P,r), (P,p)\}$ (or shorter $\{Rr, Rp, Pr, Pp\}$

Game Theory

strategy

Normal Representation

given a game Γ^e in extensive form, we define the normal representation as strategic-form game $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$:

- **1** $N = \{1, \ldots, n\}$, if Γ^e is an *n*-person game
- **2** for each *i*: C_i denotes the strategies of each player as defined above
- **3** we define the expected utility payoff u_i
 - set $C = \prod_{i \in N} C_i$
 - let x be a node in Γ^e

2.2

2.2

 C_2

2,2

1.0

R

4,0

3.1

- let $c \in C$ denote a given strategy profile
- let P(x|c) denotes the probability that the path of play goes through x, if c is chosen
- let Ω^\ast denote the set of all terminal nodes

(2,2)

(4,0)

(1,0)

(3,1)

- for $x\in \Omega^*$, $w_i(x)$ denotes the payoff for player i
- set

GM (Institute of Computer Science @ UIBP

More Examples

1.1

R

$$u_i(c) = \sum_{x \in \Omega^*} P(x|c)w_i(x)$$

1.1

LI

2.2

1.0

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, Bayesian games

equilibria of strategic-form games, evolution, resistance, and risk dominance, sequential equilibria of extensive-form games, subgame-perfect equilibria, complexity of finding Nash equilibria, equilibrium computation for two-player games

refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

GM (Institute of Computer Science @ UIB Equivalence of Strategic-Form Games

Equivalence of Strategic-Form Games

Definition

25/45

(2,2)

(4,0)

(1.0)

(3,1)

Rr

4.0

3.1

2.2

2.3

Lr

2.2

3.1

 C_2

RI

4.0

1.0

Content

games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, $\Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if

- \forall players *i*, \exists numbers A_i and B_i
- such that $A_i > 0$
- and $u'_i(c) = A_i u_i(c) + B_i$ for any $c \in C = \prod C_i$

Example		C_2				<i>C</i> ₂	
	C_1	<i>x</i> ₂	<i>y</i> 2	-	C_1	<i>x</i> ₂	<i>y</i> 2
	<i>x</i> ₁	9,9	0,8		<i>x</i> ₁	1,1	0,0
	<i>y</i> 1	8,0	7,7		<i>y</i> 1	0,0	7,7

not fully equivalent, as (x_1, x_2) is better than (y_1, y_2) in the first game, but not in the second

Game Theory

Equivalence of Strategic-Form Games	Equivalence of Strategic-Form Games			
let $C_{-i} = \prod_{j \in N \setminus \{i\}} C_j$; let (e_{-i}, d_i) denote a strategy profile, such that $e_{-i} \in C_{-i}$ and $d_i \in C_i$ • for any set Z and any $f : Z \to \mathbb{R}$, define $\operatorname{argmax}_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$	Example C_2 C_2 C_1 x_2 y_2 C_1 x_2 y_2 x_1 $9,9$ $0,8$ x_1 $1,1$ $0,0$ y_1 $8,0$ $7,7$ y_1 $0,0$ $7,7$			
• let $\eta \in \Delta(C_{-i}) = \{q \colon C_{-i} \to \mathbb{R} \mid \sum_{e_{-i} \in C_{-i}} q(e_{-i}) = 1\}$ Definition best response player <i>i</i> best response to η is $\operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i}) u_i(e_{-i}, d_i)$ Definition best response equivalence games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are best-response equivalent if (for all η) $\operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i}) u_i(e_{-i}, d_i) = \operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i}) u'_i(e_{-i}, d_i)$	player 1 • set $\eta(x_2) = \frac{1}{2}$, $\eta(y_2) = \frac{1}{2}$ • argmax _{d \in {x_1,y_1}} $\frac{1}{2}u_1(d, x_2) + \frac{1}{2}u_1(d, y_2) = \frac{1}{2}$ argmax _{d \in {x_1,y_1}} $\frac{1}{2}u_1'(d, x_2) + \frac{1}{2}u_1'(d, y_2)$ Example (cont'd) the games are best-response equivalent: as long as $\eta(y_i) \ge \frac{1}{8}$ the player's choose y_i , otherwise x_i			
GM (Institute of Computer Science @ UIBK) Game Theory 29/45 Equivalence of Strategic-Form Games 29/45	GM (Institute of Computer Science @ UIBK) Game Theory 30/45 (Fully) Reduced Normal Representation 30/45 30/45			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(u) (u) (u) (u) (u) (u) (u) (u) (u) (u)			

Fully) Reduced Normal Representatio

Definition

a randomised strategy σ_i is any probability distribution over C_i (denoted $\Delta(C_i)$; i.e., $\sigma(c_i)$ denotes the probability that *i* choses strategy c_i

Definition

a strategey d_i is randomly redundant if $\exists \sigma_i \in \Delta(C_i)$ such that $\sigma_i(d_i) = 0$

$$u_j(c_{-i}, d_i) = \sum_{e_i \in C_i} \sigma_i(e_i) u_j(c_{-i}, e_i) \quad \text{for all } c_{-i} \in C_{-i}, j \in N$$

Example

consider the randomised strategy $\sigma_1 = .5[a_1 \cdot] + .5[b_1y_1]$ of player 1

- against x_2 : .5(6,0) + .5(0,8) = (3,4)
- against y_2 : .5(6,0) + .5(8,0) = (7,0)

strategy $a_1 z_1$ is payoff equvialent to σ_1

Definition

fully reduced normal representation

fully reduced normal representation is obtained if all randomly redundant strategies are removed

Definition

strongly dominated let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is strongly dominated for player i, if \exists randomised strategy $\sigma_i \in \Delta(C_i)$ such that

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \quad \text{for all } c_{-i} \in C_{-i}$$

Definition

- let $\Gamma^{(0)} = (N, (C_i)_{i \in N}, (u_i)_{i \in N}) := \Gamma$
- let $\Gamma^{(k)} = (N, (C_i^{(k)})_{i \in N}, (u_i)_{i \in N})$, such that $C_i^{(k)}$ denotes the set of all strategies in $C_i^{(k-1)}$ not strongly dominated in $\Gamma^{(k-1)}$

Game Theory

- clearly $C_i \supseteq C_i^{(1)} \supseteq C_i^{(2)} \supseteq \cdots \supseteq C_i^{(n)} = C_i^{(n+1)}$ as $C_i^{(n)}$ cannot become empty, but is finite
- define $\Gamma^{(\infty)} = \Gamma^{(n)}$

GM (Institute of Computer Science @ UIBK

- the strategies $C_i^{(\infty)}$ are called iteratively undominated
- $\Gamma^{(\infty)}$ is the residual game

Example

GM (Institute of Computer Science @ UIBI

limination of Dominated Strategies

in the card game, strategy *Pp* is strongly dominated by $\frac{1}{2}[Rr] + \frac{1}{2}[Rp]$

Example

consider

the residual game consists of strategy a_1 and x_2

Definition

weakly dominated

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is weakly dominated for player *i*, if \exists randomised strategy $\sigma_i \in \Delta(C_i)$ such that

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) \geqslant u_i(c_{-i}, d_i) \quad \text{for all } c_{-i} \in C_{-i}$$

and

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \quad \text{for at least on } c_{-i} \in C_{-i}$$

GM (Institute of Computer Science @ UIBK

Game Theory

residual game