

Summary of Last Lecture

Definition

fully equivalent games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully equivalent if

- \forall players *i*, \exists numbers A_i and B_i such that $A_i > 0$
- and $u'_i(c) = A_i u_i(c) + B_i$ for any $c \in C = \prod C_i$

$$\forall f: Z \to \mathbb{R}$$
, define $\operatorname{argmax}_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$

Definition best-response equivalence games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \ \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are best-response equivalent if (for all $\eta \in \Delta(C_{-i})$) $\operatorname{argmax}_{d_i \in C_i} \sum \eta(e_{-i}) \boldsymbol{u}_i(e_{-i}, d_i) = \operatorname{argmax}_{d_i \in C_i} \sum \eta(e_{-i}) \boldsymbol{u}'_i(e_{-i}, d_i)$ $e_i \in C_i$ $e_i \in C_i$

Definition

strongly dominated

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is strongly dominated for player i, if \exists randomised strategey $\sigma_i \in \Delta(C_i)$ such that

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \quad \text{for all } c_{-i} \in C_{-i}$$

Definition

weakly dominated

for at least on $c_{-i} \in C_{-i}$

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we say d_i is weakly dominated for player *i*, if \exists randomised strategy $\sigma_i \in \Delta(C_i)$ such that

$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) \geqslant u_i(c_{-i}, d_i) \quad \text{for all } c_{-i} \in C_{-i}$$
$$\sum_{e_i \in C_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \quad \text{for at least on } c_{-i} \in C_{-i}$$

Game Theory

and

37/126

Elimination of Dominated Strategies

Definition

GM (Institute of Computer Science @ UIBK)

residual game

- let $\Gamma^{(0)} = (N, (C_i)_{i \in N}, (u_i)_{i \in N}) := \Gamma$
- let $\Gamma^{(k)} = (N, (C_i^{(k)})_{i \in N}, (u_i)_{i \in N})$, such that $C_i^{(k)}$ denotes the set of all strategies in $C_i^{(k-1)}$ not strongly dominated in $\Gamma^{(k-1)}$
- clearly $C_i \supseteq C_i^{(1)} \supseteq C_i^{(2)} \supseteq \cdots \supseteq C_i^{(n)} = C_i^{(n+1)}$ as $C_i^{(n)}$ cannot become empty, but is finite
- define $\Gamma^{(\infty)} = \Gamma^{(n)}$
- the strategies $C_i^{(\infty)}$ are called iteratively undominated
- $\Gamma^{(\infty)}$ is the residual game

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium

two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, computing Nash equilibria, subgame-perfect equilibra

efficient computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Common Knowledge is Important

Definition

common knowledge

- common knowledge among the players holds, if every player knows it, every player knows that every player knows it, and so on the statement (every player knows it)^k is true for all k ≥ 0
- private information is any information of a player, that is not common knowledge

Example

- two red-hat smurfs and two blue-hat smurfs travel around logic land, where they become prisoners to an evil logician
- they are placed before and after a wall and there hats get exchanged as follows

R B R B

Question

which smurf can deduct the colour of his (or her) hat?

GM (Institute of Computer Science @ UIBK)Game Theory41/126Common Knowledge

Example

- in logic land there is a region where 100 couples live
- every night all men meet and either praise their wifes or curse them
- they praise their wifes if they cannot conclude that they have been unfaithful
- otherwise they curse them
- whenever a woman is unfaithul, she and her lover inform everybody, except the husband

Facts

- for ages all the men praised their wifes
- but actually all the women have been unfaithful

A Stranger Enters

- one day a stranger announces that \exists an unfaithful wife
- for 99 day all the men continue to praise their wifes
- on the 100th day, the start to curse, moan and wail

Question why?

Answer

- every man knew of 99 unfaithful wives
- but not that his own wife was unfaithful
- so "(every man knows that)^k there is an unfaithful wife" for $k \leqslant 99$
- so 1 knew that 2 knew that 3 knew ... that 99 knew that 100's wife was unfaithful
- after the stranger speaks (and some time) the cylce closes

reasoning about common knowledge can be formalised using modal and fixed-point logic

GM (Institute of Computer Science @ UIBK) Bayesian games

Definition

incomplete information

Bayesian games

43/126

• a game has incomplete information if some players have private information before the game starts

Game Theory

• the initial private information is called the type of the player

Definition

a Bayesian game is a tuple $\Gamma^b = (N, (C_i)_{i \in N}, (T_i)_{i \in N}, (p_i)_{i \in N}, (u_i)_{i \in N})$ such that

- **1** *N* is the set of players
- **2** C_i is the set of actions of player *i*
- **3** T_i is the set of types of player *i*

4 set
$$C = \prod_{i \in N} C_i$$
, $T = \prod_{i \in N} T_i$

- **5** $p_i(\cdot|t_i) \in \Delta(T_{-i})$ is the probability distribution over the types of the other players T_{-1}
- 6 for each *i*: u_i : $C \times T \rightarrow \mathbb{R}$ is the expected utility payoff

Definition

a strategy for player *i* in Γ^b is a function $f: T \to C$

Example

consider the card game with the alteration that player 1 already knows the colour of the card

$$\Gamma^{b} = (\{1,2\}, C_{1}, C_{2}, T_{1}, T_{2}, p_{1}, p_{2}, u_{1}, u_{2})$$

•
$$C_1 = \{R, P\}, C_2 = \{M, F\}$$

•
$$T_1 = \{1.a, 1.b\}, T_2 = \{2\}$$

•
$$p_1(2|1.a) = p_1(2|1.b) = 1$$
, $p_2(1.a|2) = p_2(1.b|2) = 0.5$

• the utility functions depend on (c_1, c_2, t_1) as follows:

$t_1 = 1.a$	Μ	F	$t_1 = 1.b$	Μ	F
R	2,-2	1,-1	R	-2,2	1,-1
Р	1,-1	1,-1	Р	-1,1	-1,1

GM (Institute of Computer Science @ UIBK) Game Theory

Example

consider bargaining game: player 1 is the seller, player two is the buyer

- each player knows the value of the object to himself; assumes the value to the other is $\in [1, 100]$ with uniform probability
- each player bids a number $\in [0, 100]$
- assume utility = monetary profit

Formalisation

$$\Gamma^{b} = (\{1,2\}, C_{1}, C_{2}, T_{1}, T_{2}, p_{1}, p_{2}, u_{1}, u_{2}) \text{ such that}$$
1 $C_{1} = C_{2} = [0, 100], T_{1} = T_{2} = [1, 100]$
2 $\forall i \in N, \forall t = (t_{-i}, t_{i}) \in T \ p_{i}(t_{-i}|t_{i}) = \frac{1}{100}$
3 $u_{1}(c, t) = \frac{c_{1}+c_{2}}{2} - t_{1} \text{ if } c_{2} \ge c_{1}$
4 $u_{2}(c, t) = t_{2} - \frac{c_{1}+c_{2}}{2} \text{ if } c_{2} \ge c_{1}$
5 $u_{1}(c, t) = u_{2}(c, t) = 0 \text{ if } c_{2} < c_{1}$
 $\forall c \in C, t \in T$

Observation

- it may easier to analyse games with infinite type sets than games with large finite sets of types
- in the infinite case it suffies to define $p_i(\cdot|t_i)$ on all (measurable) subsets of T_{-i}

Example (cont'd)

$$p_i([x,y]|t_i) = \frac{(y-x)}{100}$$

Definition

a set of beliefs $(p_i)_{i \in N}$ in a Bayesian game is consistent if there exists a probability distribution $P \in \Delta(T)$ such that

$$p_i(t_{-i}|t_i) = \frac{P(t)}{\sum_{s_{-i}\in T_{-i}}P(s_{-i},t_i)} \quad \forall t \in T, i \in N$$

any Bayesian game is representable as strategic game by conceiving each type as a player

Game Theory

GM (Institute of Computer Science @ UIBK) Nash Equilibrium

Beyond Domination

Example

consider the normal representation of the card game

	C_2	
C_1	M	F
Rr	0,0	1,-1
Rp	0.5, -0.5	0,0
Pr	-0.5, 0.5	1,-1
Pр	0,0	0,0

Question

can we exclude strategy *Pr*?

Answer

not yet, as it is only weakly dominated, but not strongly

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$

- a randomised strategy for player *i*,
 is a probability distribution Δ(C_i) over C_i
- $c_i \in C_i$ is a pure strategy
- a randomised strategy profile σ ∈ ∏_{i∈N} Δ(C_i) specifies a randomised strategy for every player

Definition

let $\sigma \in \prod_{i \in N} \Delta(C_i)$, let $u_i(\sigma)$ denote the expected utility payoff for player *i*, when players choose strategies according to σ :

$$u_i(\sigma) = \sum_{c \in C} (\prod_{j \in N} \sigma_j(c_j)) u_i(c)$$
 for all $i \in N$

for $\tau_i \in \Delta(C_i)$, let (σ_{-i}, τ_i) denote the randomised strategy profile, where τ_i is substituted for σ_i , thus

$$u_i(\sigma_{-i},\tau_i) = \sum_{c \in C} \left(\prod_{j \in N \setminus \{i\}} \sigma_j(c_j)\right) \tau_i(c_i) u_i(c)$$

Game Theory

GM (Institute of Computer Science @ UIBK) Nash Equilibrium

Nash Equilibrium

let $[c_i] \in \Delta(C_i)$ such that $[c_i](x) = \begin{cases} 1 & x = c_i \\ 0 & \text{otherwise} \end{cases}$

Notation

if player *i* uses d_i , while all other players behave independently according to $\sigma_i \in \prod_{i \in N} \Delta(C_i)$, we have

$$u_i(s_{-1}, [d_i]) = \sum_{c_{-1} \in \mathcal{C}_{-1}} \left(\prod_{j \in \mathcal{N} \setminus \{i\}} \sigma_j(c_j)\right) u_i(c_{-i}, d_i)$$

Definition

Nash equilibrium

a randomised strategy profile σ is a (mixed) Nash equilibrium of Γ if the following holds for all $i \in N$, and every $c_i \in C_i$

if
$$\sigma_i(c_i) > 0$$
, then $c_i \in \operatorname{argmax}_{d_i \in C_i} u_i(\sigma_{-i}, [d_i])$

Nash Equilibrium

Lemma

- for any $\sigma \in \prod_{i \in N} \Delta(C_i)$ and any player i $\max_{c_i \in C_i} u_i(\sigma_{-i}, [c_i]) = \max_{\tau_i \in \Delta(C_i)} u_i(\sigma_{-i}, \tau_i)$
- furthermore, p_i ∈ argmax_{τi∈Δ(Ci} u_i(σ_{-i}, τ_i) if and only if p_i(c_i) = 0 for every c_i ∉ argmax_{ci∈Ci} u_i(σ_{-i}, c_i)

the highest expected utility player *i* can get is independent of the fact whether player *i* used randomised strategies for herself

a pure strategy profile $c \in C$ is a pure Nash equilibrium if for all $i \in N$, and every $d_i \in C_i$

$$u_i(c) \ge u_i(c_{-i}, d_i)$$

GM (Institute of Computer Science @ UIBK) Game Theory Nash Equilibrium

Example

Example consider the following game

		C_2	
C_1	<i>x</i> ₂	<i>y</i> ₂	<i>z</i> ₂
<i>x</i> ₁	3,0	0,2	0,3
<i>y</i> 1	2,0	1,1	2,0
<i>z</i> 1	0,3	0,2	3,0

the unique Nash equilibrium is (y_1, y_2)

Observation

- none of the strategies are (weakly, strongly) dominated
- every strategy is best response to one of the other player's strategies