## Game Theory

Georg Moser

## Institute of Computer Science @ UIBK

Winter 2009

## Summary of Last Lecture

Definition
fully equivalent
games $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right), \Gamma^{\prime}=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}^{\prime}\right)_{i \in N}\right)$ are fully equivalent if

- $\forall$ players $i, \exists$ numbers $A_{i}$ and $B_{i}$ such that $A_{i}>0$
- and $u_{i}^{\prime}(c)=A_{i} u_{i}(c)+B_{i}$ for any $c \in C=\prod C_{i}$
$\forall f: Z \rightarrow \mathbb{R}$, define $\operatorname{argmax}_{y \in Z} f(y)=\left\{y \in Z \mid f(y)=\max _{z \in Z} f(z)\right\}$

Definition
best-response equivalence
games $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right), \Gamma^{\prime}=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}^{\prime}\right)_{i \in N}\right)$ are best-response equivalent if (for all $\eta \in \Delta\left(C_{-i}\right)$ )
$\operatorname{argmax}_{d_{i} \in C_{i}} \sum_{e_{-i} \in C_{-i}} \eta\left(e_{-i}\right) u_{i}\left(e_{-i}, d_{i}\right)=\operatorname{argmax}_{d_{i} \in C_{i}} \sum_{e_{-i} \in C_{-i}} \eta\left(e_{-i}\right) u^{\prime}{ }_{i}\left(e_{-i}, d_{i}\right)$

## Definition

strongly dominated let $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$, we say $d_{i}$ is strongly dominated for player $i$, if $\exists$ randomised strategey $\sigma_{i} \in \Delta\left(C_{i}\right)$ such that

$$
\sum_{e_{i} \in C_{i}} \sigma_{i}\left(e_{i}\right) u_{i}\left(c_{-i}, e_{i}\right)>u_{i}\left(c_{-i}, d_{i}\right) \quad \text { for all } c_{-i} \in C_{-i}
$$

Definition
weakly dominated
let $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$, we say $d_{i}$ is weakly dominated for player $i$, if $\exists$ randomised strategy $\sigma_{i} \in \Delta\left(C_{i}\right)$ such that

$$
\sum_{e_{i} \in C_{i}} \sigma_{i}\left(e_{i}\right) u_{i}\left(c_{-i}, e_{i}\right) \geqslant u_{i}\left(c_{-i}, d_{i}\right) \quad \text { for all } c_{-i} \in C_{-i}
$$

and

$$
\sum_{e_{i} \in C_{i}} \sigma_{i}\left(e_{i}\right) u_{i}\left(c_{-i}, e_{i}\right)>u_{i}\left(c_{-i}, d_{i}\right) \quad \text { for at least on } c_{-i} \in C_{-i}
$$

## Elimination of Dominated Strategies

Definition
residual game

- let $\Gamma^{(0)}=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right):=\Gamma$
- let $\Gamma^{(k)}=\left(N,\left(C_{i}^{(k)}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$, such that $C_{i}^{(k)}$ denotes the set of all strategies in $C_{i}^{(k-1)}$ not strongly dominated in $\Gamma^{(k-1)}$
- clearly $C_{i} \supseteq C_{i}^{(1)} \supseteq C_{i}^{(2)} \supseteq \cdots \supseteq C_{i}^{(n)}=C_{i}^{(n+1)}$ as $C_{i}^{(n)}$ cannot become empty, but is finite
- define $\Gamma^{(\infty)}=\Gamma^{(n)}$
- the strategies $C_{i}^{(\infty)}$ are called iteratively undominated
- $\Gamma^{(\infty)}$ is the residual game


## Content

motivation, introduction to decision theory, decision theory
basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium
two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, computing Nash equilibria, subgame-perfect equilibra
efficient computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

## Example


suppose player 1 has drawn a black card; consultant models game as follows


## Common Knowledge is Important <br> Definition

- common knowledge among the players holds, if every player knows it, every player knows that every player knows it, and so on the statement (every player knows it) ${ }^{k}$ is true for all $k \geqslant 0$
- private information is any information of a player, that is not common knowledge


## Example

- two red-hat smurfs and two blue-hat smurfs travel around logic land, where they become prisoners to an evil logician
- they are placed before and after a wall and there hats get exchanged as follows


## $R \mid B \quad R \quad B$

## Question

which smurf can deduct the colour of his (or her) hat?

Example

- in logic land there is a region where 100 couples live
- every night all men meet and either praise their wifes or curse them
- they praise their wifes if they cannot conclude that they have been unfaithful
- otherwise they curse them
- whenever a woman is unfaithul, she and her lover inform everybody, except the husband


## Facts

- for ages all the men praised their wifes
- but actually all the women have been unfaithful


## A Stranger Enters

- one day a stranger announces that $\exists$ an unfaithful wife
- for 99 day all the men continue to praise their wifes
- on the 100th day, the start to curse, moan and wail


## Question

why?

## Answer

- every man knew of 99 unfaithful wives
- but not that his own wife was unfaithful
- so "(every man knows that) ${ }^{k}$ there is an unfaithful wife" for $k \leqslant 99$
- so 1 knew that 2 knew that 3 knew ... that 99 knew that 100 's wife was unfaithful
- after the stranger speaks (and some time) the cylce closes
reasoning about common knowledge can be formalised using modal and fixed-point logic
- a game has incomplete information if some players have private information before the game starts
- the initial private information is called the type of the player

Definition
Bayesian games
a Bayesian game is a tuple $\Gamma^{b}=\left(N,\left(C_{i}\right)_{i \in N},\left(T_{i}\right)_{i \in N},\left(p_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ such that
(1) $N$ is the set of players
2. $C_{i}$ is the set of actions of player $i$

3 $T_{i}$ is the set of types of player $i$
4 set $C=\prod_{i \in N} C_{i}, T=\prod_{i \in N} T_{i}$
$5 p_{i}\left(\cdot \mid t_{i}\right) \in \Delta\left(T_{-i}\right)$ is the probability distribution over the types of the other players $T_{-1}$
$\boldsymbol{\sigma}$ for each $i: u_{i}: C \times T \rightarrow \mathbb{R}$ is the expected utility payoff

## Definition

a strategy for player $i$ in $\Gamma^{b}$ is a function $f: T \rightarrow C$

## Example

consider the card game with the alteration that player 1 already knows the colour of the card

$$
\Gamma^{b}=\left(\{1,2\}, C_{1}, C_{2}, T_{1}, T_{2}, p_{1}, p_{2}, u_{1}, u_{2}\right)
$$

- $C_{1}=\{R, P\}, C_{2}=\{M, F\}$
- $T_{1}=\{1 . a, 1 . b\}, T_{2}=\{2\}$
- $p_{1}(2 \mid 1 . a)=p_{1}(2 \mid 1 . b)=1, p_{2}(1 . a \mid 2)=p_{2}(1 . b \mid 2)=0.5$
- the utility functions depend on $\left(c_{1}, c_{2}, t_{1}\right)$ as follows:

| $t_{1}=1 . a$ | $M$ | $F$ |
| :---: | :---: | :---: |
| $R$ | $2,-2$ | $1,-1$ |
| $P$ | $1,-1$ | $1,-1$ |


| $t_{1}=1 . b$ | $M$ | $F$ |
| :---: | :---: | :---: |
| $R$ | $-2,2$ | $1,-1$ |
| $P$ | $-1,1$ | $-1,1$ |

## Example

consider bargaining game: player 1 is the seller, player two is the buyer

- each player knows the value of the object to himself; assumes the value to the other is $\in[1,100]$ with uniform probability
- each player bids a number $\in[0,100]$
- assume utility $=$ monetary profit


## Formalisation

$$
\Gamma^{b}=\left(\{1,2\}, C_{1}, C_{2}, T_{1}, T_{2}, p_{1}, p_{2}, u_{1}, u_{2}\right) \text { such that }
$$

$1 C_{1}=C_{2}=[0,100], T_{1}=T_{2}=[1,100]$
$2 \forall i \in N, \forall t=\left(t_{-i}, t_{i}\right) \in T p_{i}\left(t_{-i} \mid t_{i}\right)=\frac{1}{100}$
$3 u_{1}(c, t)=\frac{c_{1}+c_{2}}{2}-t_{1}$ if $c_{2} \geqslant c_{1}$
$4 u_{2}(c, t)=t_{2}-\frac{c_{1}+c_{2}}{2}$ if $c_{2} \geqslant c_{1}$
$5 u_{1}(c, t)=u_{2}(c, t)=0$ if $c_{2}<c_{1}$
$\forall c \in C, t \in T$

Observation

- it may easier to analyse games with infinite type sets than games with large finite sets of types
- in the infinite case it suffies to define $p_{i}\left(\cdot \mid t_{i}\right)$ on all (measurable) subsets of $T_{-i}$
Example (cont'd)

$$
p_{i}\left([x, y] \mid t_{i}\right)=\frac{(y-x)}{100}
$$

Definition
a set of beliefs $\left(p_{i}\right)_{i \in N}$ in a Bayesian game is consistent if there exists a probability distribution $P \in \Delta(T)$ such that

$$
p_{i}\left(t_{-i} \mid t_{i}\right)=\frac{P(t)}{\sum_{s_{-i} \in T_{-i}} P\left(s_{-i}, t_{i}\right)} \quad \forall t \in T, i \in N
$$

any Bayesian game is representable as strategic game by conceiving each type as a player

## Beyond Domination

## Example

consider the normal representation of the card game

|  | $C_{2}$ |  |
| :---: | :---: | :---: |
| $C_{1}$ | $M$ | $F$ |
| $R r$ | 0,0 | $1,-1$ |
| $R p$ | $0.5,-0.5$ | 0,0 |
| $P r$ | $-0.5,0.5$ | $1,-1$ |
| $P p$ | 0,0 | 0,0 |

## Question

can we exclude strategy $\operatorname{Pr}$ ?

## Answer

not yet, as it is only weakly dominated, but not strongly
let $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$

- a randomised strategy for player $i$, is a probability distribution $\Delta\left(C_{i}\right)$ over $C_{i}$
- $c_{i} \in C_{i}$ is a pure strategy
- a randomised strategy profile $\sigma \in \prod_{i \in N} \Delta\left(C_{i}\right)$ specifies a randomised strategy for every player


## Definition

let $\sigma \in \prod_{i \in N} \Delta\left(C_{i}\right)$, let $u_{i}(\sigma)$ denote the expected utility payoff for player $i$, when players choose strategies according to $\sigma$ :

$$
u_{i}(\sigma)=\sum_{c \in C}\left(\prod_{j \in N} \sigma_{j}\left(c_{j}\right)\right) u_{i}(c) \quad \text { for all } i \in N
$$

for $\tau_{i} \in \Delta\left(C_{i}\right)$, let $\left(\sigma_{-i}, \tau_{i}\right)$ denote the randomised strategy profile, where $\tau_{i}$ is substituted for $\sigma_{i}$, thus

$$
u_{i}\left(\sigma_{-i}, \tau_{i}\right)=\sum_{c \in C}\left(\prod_{j \in N \backslash\{i\}} \sigma_{j}\left(c_{j}\right)\right) \tau_{i}\left(c_{i}\right) u_{i}(c)
$$

## GM (Institute of Computer Science @ UIBK)

Nash Equilibrium
let $\left[c_{i}\right] \in \Delta\left(C_{i}\right)$ such that

$$
\left[c_{i}\right](x)= \begin{cases}1 & x=c_{i} \\ 0 & \text { otherwise }\end{cases}
$$

## Notation

if player $i$ uses $d_{i}$, while all other players behave independently according to $\sigma_{i} \in \prod_{i \in N} \Delta\left(C_{i}\right)$, we have

$$
u_{i}\left(s_{-1},\left[d_{i}\right]\right)=\sum_{c_{-1} \in C_{-1}}\left(\prod_{j \in N \backslash\{i\}} \sigma_{j}\left(c_{j}\right)\right) u_{i}\left(c_{-i}, d_{i}\right)
$$

Definition Nash equilibrium a randomised strategy profile $\sigma$ is a (mixed) Nash equilibrium of $\Gamma$ if the following holds for all $i \in N$, and every $c_{i} \in C_{i}$

$$
\text { if } \sigma_{i}\left(c_{i}\right)>0 \text {, then } c_{i} \in \operatorname{argmax}_{d_{i} \in c_{i}} u_{i}\left(\sigma_{-i},\left[d_{i}\right]\right)
$$

## Lemma

- for any $\sigma \in \prod_{i \in N} \Delta\left(C_{i}\right)$ and any player $i$

$$
\max _{c_{i} \in C_{i}} u_{i}\left(\sigma_{-i},\left[c_{i}\right]\right)=\max _{\tau_{i} \in \Delta\left(C_{i}\right)} u_{i}\left(\sigma_{-i}, \tau_{i}\right)
$$

- furthermore, $p_{i} \in \operatorname{argmax}_{\tau_{i} \in \Delta\left(c_{i}\right)} u_{i}\left(\sigma_{-i}, \tau_{i}\right)$ if and only if $p_{i}\left(c_{i}\right)=0$ for every $c_{i} \notin \operatorname{argmax}_{c_{i} \in C_{i}} u_{i}\left(\sigma_{-i}, c_{i}\right)$
the highest expected utility player $i$ can get is independent of the fact whether player $i$ used randomised strategies for herself
a pure strategy profile $c \in C$ is a pure Nash equilibrium if for all $i \in N$, and every $d_{i} \in C_{i}$

$$
u_{i}(c) \geqslant u_{i}\left(c_{-i}, d_{i}\right)
$$

## Example

## Example

consider the following game

|  | $C_{2}$ |  |  |
| :---: | :---: | :---: | :---: |
| $C_{1}$ | $x_{2}$ | $y_{2}$ | $z_{2}$ |
| $x_{1}$ | 3,0 | 0,2 | 0,3 |
| $y_{1}$ | 2,0 | 1,1 | 2,0 |
| $z_{1}$ | 0,3 | 0,2 | 3,0 |

the unique Nash equilibrium is $\left(y_{1}, y_{2}\right)$

## Observation

- none of the strategies are (weakly, strongly) dominated
- every strategy is best response to one of the other player's strategies

