gic	Summary of Last Lecture Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are fully	
Game Theory	games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$ are fully equivalent if • \forall players i , \exists numbers A_i and B_i such that $A_i > 0$ • and $u'_i(c) = A_i u_i(c) + B_i$ for any $c \in C = \prod C_i$	
Georg Moser	$\forall f: Z \to \mathbb{R}, \text{ define } \operatorname{argmax}_{y \in \mathbb{Z}} f(y) = \{y \in Z \mid f(y) = \max_{z \in \mathbb{Z}} f(z)\}$	
Institute of Computer Science @ UIBK Winter 2009	Definition games $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \Gamma' = (N, (C_i)_{i \in N}, (u'_i)_{i \in N})$ are best-response equivalent if (for all $\eta \in \Delta(C_{-i})$) argmax _{$d_i \in C_i$} $\sum_{e_{-i} \in C_{-i}} \eta(e_{-i})u_i(e_{-i}, d_i) = \operatorname{argmax}_{d_i \in C_i} \sum_{e_{-i} \in C_{-i}} \eta(e_{-i})u'_i(e_{-i}, d_i)$	
GM (Institute of Computer Science @ UIBK) Game Theory 1/126	GM (Institute of Computer Science @ UIBK) Game Theory 36/126	
$ \begin{array}{ll} \mbox{Definition} & \mbox{strongly dominated} \\ \mbox{let } \Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \mbox{ we say } d_i \mbox{ is strongly dominated for player } i, \\ \mbox{if } \exists \mbox{ randomised strategey } \sigma_i \in \Delta(C_i) \mbox{ such that} \\ & \sum \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) \mbox{ for all } c_{-i} \in C_{-i} \end{array} $	Elimination of Dominated Strategies	
$\begin{array}{l} \sum_{e_i \in \mathcal{C}_i} & \text{weakly dominated} \\ \end{array}$ $\begin{array}{l} \text{Definition} & \text{weakly dominated} \\ \text{let } \Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}), \text{ we say } d_i \text{ is weakly dominated for player } i, \text{ if} \\ \exists \text{ randomised strategy } \sigma_i \in \Delta(C_i) \text{ such that} \\ & \sum_{e_i \in \mathcal{C}_i} \sigma_i(e_i) u_i(c_{-i}, e_i) \geqslant u_i(c_{-i}, d_i) & \text{ for all } c_{-i} \in \mathcal{C}_{-i} \\ \text{and} & \sum_{e_i \in \mathcal{C}_i} \sigma_i(e_i) u_i(c_{-i}, e_i) > u_i(c_{-i}, d_i) & \text{ for at least on } c_{-i} \in \mathcal{C}_{-i} \end{array}$	Definition residual game • let $\Gamma^{(0)} = (N, (C_i)_{i \in N}, (u_i)_{i \in N}) := \Gamma$ • let $\Gamma^{(k)} = (N, (C_i^{(k)})_{i \in N}, (u_i)_{i \in N})$, such that $C_i^{(k)}$ denotes the set of all strategies in $C_i^{(k-1)}$ not strongly dominated in $\Gamma^{(k-1)}$ • clearly $C_i \supseteq C_i^{(1)} \supseteq C_i^{(2)} \supseteq \cdots \supseteq C_i^{(n)} = C_i^{(n+1)}$ as $C_i^{(n)}$ cannot become empty, but is finite • define $\Gamma^{(\infty)} = \Gamma^{(n)}$ • the strategies $C_i^{(\infty)}$ are called iteratively undominated • $\Gamma^{(\infty)}$ is the residual game	

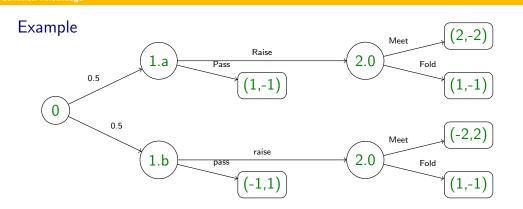
Content

motivation, introduction to decision theory, decision theory

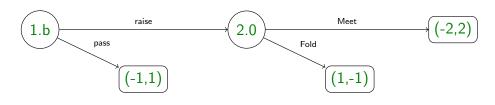
basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium

two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, computing Nash equilibria, subgame-perfect equilibra

efficient computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games



suppose player 1 has drawn a black card; consultant models game as follows



GM (Institute of Computer Science @ UIBK) Game Theory 39/126	GM (Institute of Computer Science @ UIBK) Game Theory 40/126
Common Knowledge	Common Knowledge
Common Knowledge is Important Definition common knowledge • common knowledge among the players holds, if every player knows it, every player knows that every player knows it, and so on the statement (every player knows it) ^k is true for all k ≥ 0 • private information is any information of a player, that is not common knowledge	 Example in logic land there is a region where 100 couples live every night all men meet and either praise their wifes or curse them they praise their wifes if they cannot conclude that they have been unfaithful otherwise they curse them whenever a woman is unfaithul, she and her lover inform everybody, except the husband
 Example two red-hat smurfs and two blue-hat smurfs travel around logic land, where they become prisoners to an evil logician they are placed before and after a wall and there hats get exchanged as follows R B R B 	 Facts for ages all the men praised their wifes but actually all the women have been unfaithful A Stranger Enters one day a stranger announces that ∃ an unfaithful wife

Question

which smurf can deduct the colour of his (or her) hat?

- for 99 day all the men continue to praise their wifes
- $\bullet\,$ on the 100th day, the start to curse, moan and wail

Common Knowledge	Bayesian games
Question why? Answer • every man knew of 99 unfaithful wives • but not that his own wife was unfaithful • so "(every man knows that) ^k there is an unfaithful wife" for k ≤ 99 • so 1 knew that 2 knew that 3 knew that 99 knew that 100's wife was unfaithful • after the stranger speaks (and some time) the cylce closes	 Bayesian games Definition incomplete information if some players have private information before the game starts the initial private information is called the type of the player Definition Bayesian games a Bayesian game is a tuple Γ^b = (N, (C_i)_{i∈N}, (T_i)_{i∈N}, (p_i)_{i∈N}, (u_i)_{i∈N}) such that N is the set of players C_i is the set of players C_i is the set of types of player i set C = Π_{i∈N} C_i, T = Π_{i∈N} T_i
reasoning about common knowledge can be formalised using modal and fixed-point logic	Set $C = \prod_{i \in N} C_i$, $T = \prod_{i \in N} T_i$ 5 $p_i(\cdot t_i) \in \Delta(T_{-i})$ is the probability distribution over the types of the other players T_{-1} 6 for each $i: u_i: C \times T \to \mathbb{R}$ is the expected utility payoff GM (Institute of Computer Science @ UIBK) Game Theory 44/120 Bayesian games
Definition a strategy for player <i>i</i> in Γ^b is a function $f: T \to C$ Example consider the card game with the alteration that player 1 already knows the colour of the card $\Gamma^b = (\{1,2\}, C_1, C_2, T_1, T_2, p_1, p_2, u_1, u_2)$ • $C_1 = \{R, P\}, C_2 = \{M, F\}$ • $T_1 = \{1.a, 1.b\}, T_2 = \{2\}$ • $p_1(2 1.a) = p_1(2 1.b) = 1, p_2(1.a 2) = p_2(1.b 2) = 0.5$ • the utility functions depend on (c_1, c_2, t_1) as follows: $\frac{t_1 = 1.a}{P} = \frac{M}{1, -1} = \frac{F}{1, -1} = \frac{t_1 = 1.b}{P} = \frac{M}{P} = \frac{F}{-1, 1} = \frac{T_1 - 1}{1, -1}$	Example consider bargaining game: player 1 is the seller, player two is the buyer • each player knows the value of the object to himself; assumes the value to the other is $\in [1, 100]$ with uniform probability • each player bids a number $\in [0, 100]$ • assume utility = monetary profit Formalisation $\Gamma^b = (\{1, 2\}, C_1, C_2, T_1, T_2, p_1, p_2, u_1, u_2)$ such that • $C_1 = C_2 = [0, 100], T_1 = T_2 = [1, 100]$ • $\forall i \in N, \forall t = (t_{-i}, t_i) \in T p_i(t_{-i} t_i) = \frac{1}{100}$ • $u_1(c, t) = \frac{c_1+c_2}{2} - t_1$ if $c_2 \ge c_1$ • $u_1(c, t) = u_2(c, t) = 0$ if $c_2 < c_1$ • $\forall c \in C, t \in T$

Observation

- it may easier to analyse games with infinite type sets than games with large finite sets of types
- in the infinite case it suffies to define $p_i(\cdot|t_i)$ on all (measurable) subsets of T_{-i}

Example (cont'd)

$$p_i([x,y]|t_i) = \frac{(y-x)}{100}$$

Definition

a set of beliefs $(p_i)_{i \in N}$ in a Bayesian game is consistent if there exists a probability distribution $P \in \Delta(T)$ such that

$$p_i(t_{-i}|t_i) = rac{P(t)}{\sum_{s_{-i}\in T_{-i}}P(s_{-i},t_i)} \quad \forall t \in T, i \in N$$

any Bayesian game is representable as strategic game by conceiving each type as a player

Beyond Domination

Example

consider the normal representation of the card game

	<i>C</i> ₂		
C_1	М	F	
Rr	0,0	1, -1	
Rр	0.5, -0.5	0,0	
Pr	-0.5, 0.5	1,-1	
Pр	0,0	0,0	

Question

can we exclude strategy Pr?

Answer

not yet, as it is only weakly dominated, but not strongly

GM (Institute of Computer Science @ UIBK

let $\Gamma = (N, (C_i)_{i \in \mathbb{N}}, (u_i)_{i \in \mathbb{N}})$

- a randomised strategy for player *i*, is a probability distribution $\Delta(C_i)$ over C_i
- $c_i \in C_i$ is a pure strategy
- a randomised strategy profile $\sigma \in \prod_{i \in N} \Delta(C_i)$ specifies a randomised strategy for every player

Definition

let $\sigma \in \prod_{i \in N} \Delta(C_i)$, let $u_i(\sigma)$ denote the expected utility payoff for player *i*, when players choose strategies according to σ :

$$u_i(\sigma) = \sum_{c \in C} \left(\prod_{j \in N} \sigma_j(c_j)\right) u_i(c) \quad \text{for all } i \in N$$

for $\tau_i \in \Delta(C_i)$, let (σ_{-i}, τ_i) denote the randomised strategy profile, where τ_i is substituted for σ_i , thus

$$u_i(\sigma_{-i},\tau_i) = \sum_{c \in C} (\prod_{j \in N \setminus \{i\}} \sigma_j(c_j)) \tau_i(c_i) u_i(c)$$

Nash Equilibrium let $[c_i] \in \Delta$

GM (Institute of Computer Science @ UIBK

$$\Delta(C_i)$$
 such that $[c_i](x) = egin{cases} 1 & x = c_i \ 0 & ext{otherwise} \end{cases}$

Notation

if player *i* uses d_i , while all other players behave independently according to $\sigma_i \in \prod_{i \in N} \Delta(C_i)$, we have

$$u_i(s_{-1}, [d_i]) = \sum_{c_{-1} \in \mathcal{C}_{-1}} \left(\prod_{j \in \mathcal{N} \setminus \{i\}} \sigma_j(c_j)\right) u_i(c_{-i}, d_i)$$

Definition

Nash equilibrium a randomised strategy profile σ is a (mixed) Nash equilibrium of Γ if the following holds for all $i \in N$, and every $c_i \in C_i$

if
$$\sigma_i(c_i)>$$
 0, then $c_i\in ext{argmax}_{d_i\in C_i}u_i(\sigma_{-i},[d_i])$

Game Theory

GM (Institute of Computer Science @ UIBK

Game Theory

Nash Equilibrium

Lemma

GM (Institute of Computer Science @ UIBK)

• for any $\sigma \in \prod_{i \in N} \Delta(C_i)$ and any player i

 $\max_{c_i \in C_i} u_i(\sigma_{-i}, [c_i]) = \max_{\tau_i \in \Delta(C_i)} u_i(\sigma_{-i}, \tau_i)$

 furthermore, p_i ∈ argmax_{τi∈Δ(Ci}) u_i(σ_{-i}, τ_i) if and only if p_i(c_i) = 0 for every c_i ∉ argmax_{ci∈Ci} u_i(σ_{-i}, c_i)

the highest expected utility player i can get is independent of the fact whether player i used randomised strategies for herself

a pure strategy profile $c \in C$ is a pure Nash equilibrium if for all $i \in N$, and every $d_i \in C_i$

$$u_i(c) \ge u_i(c_{-i}, d_i)$$

Game Theory

Nash Equilibrium

Example

Example consider the following game

	<i>C</i> ₂		
C_1	<i>x</i> ₂	<i>y</i> ₂	<i>z</i> ₂
<i>x</i> ₁	3,0	0,2	0,3
y_1	2,0	1,1	2,0
<i>z</i> 1	0,3	0,2	3,0

the unique Nash equilibrium is (y_1, y_2)

Observation

51/126 GM (Institute of Computer Science @ UIBK)

- none of the strategies are (weakly, strongly) dominated
- every strategy is best response to one of the other player's strategies

52/126

Game Theory