

Summary of Last Last Lecture

Definition

a Bayesian game is a tuple $\Gamma^b = (N, (C_i)_{i \in N}, (T_i)_{i \in N}, (p_i)_{i \in N}, (u_i)_{i \in N})$ such that

- **1** *N* is the set of players
- **2** C_i is the set of actions of player *i*
- **3** T_i is the set of types of player *i*
- 4 set $C = \prod_{i \in N} C_i$, $T = \prod_{i \in N} T_i$
- **5** $p_i(\cdot|t_i) \in \Delta(T_{-i})$ is the probability distribution over the types of the other players T_{-i}
- **6** for each *i*: $u_i: C \times T \to \mathbb{R}$ is the expected utility payoff

Definition

a strategy for player *i* in Γ^b is a function $f: T \to C$

Bayesian games

Definition

let $\sigma \in \prod_{i \in N} \Delta(C_i)$, let $u_i(\sigma)$ denote the expected utility payoff for player *i*, when players choose strategies according to σ :

$$u_i(\sigma) = \sum_{c \in C} (\prod_{j \in N} \sigma_j(c_j)) u_i(c)$$
 for all $i \in N$

for $\tau_i \in \Delta(C_i)$, let (σ_{-i}, τ_i) denote the randomised strategy profile, where τ_i is substituted for σ_i , thus

$$u_i(\sigma_{-i},\tau_i) = \sum_{c \in C} \left(\prod_{j \in N \setminus \{i\}} \sigma_j(c_j)\right) \tau_i(c_i) u_i(c)$$

Definition

Nash equilibrium

21/82

a randomised strategy profile σ is a Nash equilibrium of Γ if the following holds for all $i \in N$, and every $\tau_i \in \Delta(C_i)$

Game Theory

$$u_i(\sigma) \geqslant u_i(\sigma_{-i}, \tau_i)$$

GM (Institute of Computer Science @ UIBK) Content

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium

two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, subgame-perfect equilibra

(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Existence of Nash Equilibrium

Theorem

given a finite game Γ in strategic form, there exists at least one (Nash) equilibrium in $\prod_{i \in N} \Delta(C_i)$

Example

	C_2		
C_1	M	F	
Rr	0,0	1, -1	
Rp	0.5, -0.5	0,0	
Pr	-0.5, 0.5	1,-1	
Pр	0,0	0,0	

then no pure equilibrium exists, and we can only eliminated Pp

Fact

randomised strategies are needed for this theorem

GM (Institute of Computer Science @ UIBK) Game Theory

Content

Definition

the outcome of a game in Pareto efficient if there is no other outcome that would make all players better of

a game may have equilibria that are inefficient, and a game may have multiple equilibria

Example

prisoner dilemma

Nash 1951

	(C_2		
C_1	g 2	f_2		
g_1	5,5	0,6		
f_1	6,0	1,1		

• the only equilibrium is $([f_1], [f_2])$ which is inefficient

Content				
Everenie				hattle of the second
Example				battle of the sexes
			<i>C</i> ₂	
	C_1	f_2		
		3,1	<u> </u>	
	<i>s</i> ₁	0,0	1,3	
	-	,	,	
 the game as two pure 	e equilil	oria		
	$([f_1],$	$[f_2])$	$([s_1], [s_2])$)
 and one (inefficient) mixed equilibria 				
(0.75	$[f_1] + 0$	25[51]	$0.25[f_2] + 0$	$75[s_{2}]$
(0.13	[/1] 0	.23[31],	0.23[12] + 0	
GM (Institute of Computer Science @ UIBK)		Game Theory		25/82

The Focal-Point Effect

Definition

Content

focal-point effect

anything that tends to focus the players' attention on one equilibrium may make them all expect it and hence fulfil it; this is called focal-point effect

Example

battle of the sexes with communication

		C_2			
C_1	$f_2 f_2$	<i>f</i> ₂ <i>s</i> ₂	<i>s</i> ₂ <i>f</i> ₂	<i>s</i> ₂ <i>s</i> ₂	
Ff ₁	3,1	3,1	0,0	0,0	
Fs_1	0,0	0,0	1,3	1,3	
Sf_1	3,1	0,0	3,1	0,0	
Ss_1	0,0	1,3	0,0	1,3	

Definition

if a game can be influence by preplay communication, the player whose words are headed is called focal arbitrator

Example

battle of the sexes (2)

	\mathcal{L}_2	
C_1	f_2	<i>s</i> ₂
f_1	3,1	0,0
s_1	0,0	1,3

Example

battle of the sexes (3)

	(C_2		
C_1	f_2	<i>s</i> ₂		
f_1	3,1	0,0		
<i>s</i> ₁	0,0	1,3		

 assumption: the man is Dr. Taub and he has recently confessed his adultery

GM (Institute of Computer Science @ UIBK) Game Theory
Content

Example

• there are two players

• both can make demands for sum [1, 100] in €i.e.,

$$C_1 = C_2 = \{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 100\}$$

• the payoff function is defined as follows:

$$u_i(c_1, c_2) = egin{cases} 0 & ext{if } c_1 + c_2 > 100 \ c_i & ext{if } c_1 + c_2 \leqslant 100 \end{cases}$$

Analysis

- any pair (x, 100 x) is an equilibrium, on the other hand also the pair (100, 100) is an equilibrium
- an impartial moderator may suggest (50, 50) as it is efficient
- moreover (50, 50) has strong incentive, it is a focal equilibrium even if the moderator is absent

divide the dollar

Evolution

Idea

identify good strategies by a biological evolutionary criterion

Definition

- $L_i \subseteq \Delta(C_i)$ of promising randomised strategies
- \forall player *i*
- \exists *i*-animals that implement a strategy $\sigma_i \in L_i$
- each *i*-animal plays the game repeatedly using σ_i
- \forall player $j \neq i$
- let the *j*-animals randomly choose among the strategies in L_i
- define

$$q_j^k(\sigma_j) = \frac{j - \text{animals that implement } \sigma_j}{\text{all } j - \text{animals}}$$
 (in generation k)

Game Theory

GM (Institute of Computer Science @ UIBK) Evolution, Resistance, and Risk Dominance

Definition

• define

$$\overline{\sigma}_{-i}^{k}(c_{j}) = \sum_{\sigma_{j} \in L_{j}} q_{j}^{k}(\sigma_{j})\sigma_{j}(c_{j}) \qquad \forall j \in N, \ \forall c_{j} \in C_{j}$$

- set $\overline{\sigma}^k = (\overline{\sigma}_j^k)_{j \in N}$
- and $\overline{u}_i^k(\sigma_i) = u_i(\overline{\sigma}_{-i}^k, \sigma_i)$

Definition

the number of children in the next generation k + 1 depends on the expected payoff:

$$\boldsymbol{q}_i^{k+1}(\sigma_i) = \frac{\boldsymbol{q}_i^k(\sigma_i)\overline{\boldsymbol{u}}_i^k(\sigma_i)}{\sum_{\tau_i \in L_i} \boldsymbol{q}_i^k(\sigma_i)\overline{\boldsymbol{u}}_i^k(\tau_i)}$$

"Definition"

strategies that survive in the end, are good

strategies that behave poorly can be crucial to determine which strategy reproduces best

29/82

Axelrod 1984

Risk Dominance

Idea ②

Harsanyi, Selten 1988 overcome this dependency on poor strategies, using risk dominance of strategies

Definition

- \forall games Γ is strategic form
- $\forall \sigma, \tau$ equilibria in $\prod_{i \in N} \Delta(C_i)$ the resistance of σ against τ is the largest $\lambda \in [0, 1]$ such that $\forall j \in N$:

 $u_i((\lambda \tau_i + (1-\lambda)\sigma_i)_{i \in N-\{i\}}, \sigma_i) \ge u_i((\lambda \tau_i + (1-\lambda)\sigma_j)_{i \in N-\{i\}}, \tau_i)$

• an equilibrium σ risk dominates another equilibrium τ if the resistance of σ against τ is greater than the resistance of τ against σ

Note

the resistance measure the "evolutionary" strength of an equilibrium

Game Theory

GM (Institute of Computer Science @ UIBK)

Two-Person Zero-Sum Games

Example

	C_2		
C_1	M	F	
Rr	0,0	1, -1	
Rp	0.5, -0.5	0,0	
Pr	-0.5, 0.5	1,-1	
Pр	0,0	0,0	

Observation

 $u_1(c_1, c_2) = -u_2(c_1, c_2)$ $\forall c_1 \in \{Rr, Rp, Pr, Pp\}$ $\forall c_2 \in \{M, F\}$

Definition

a two-person zero-sum game Γ in strategic form is a game $\Gamma = (\{1,2\}, C_1, C_2, u_1, u_2): u_1(c_1, c_2) = -u_2(c_1, c_2) \ \forall c_1 \in C_1, \ \forall c_2 \in C_2$

Min-Max Theorem

Theorem

 (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1,2\}, C_1, C_2, u_1, -u_1)$ if and only if

$$\sigma_{1} \in \operatorname{argmax}_{\tau_{1} \in \Delta(C_{1})} \min_{\tau_{2} \in \Delta(C_{2})} u_{1}(\tau_{1}, \tau_{2})$$

$$\sigma_{2} \in \operatorname{argmin}_{\tau_{2} \in \Delta(C_{2})} \max_{\tau_{1} \in \Delta(C_{1})} u_{1}(\tau_{1}, \tau_{2})$$

furthermore if (σ_1, σ_2) an equilibrium of Γ , then

$$u_1(\sigma_1,\sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1,\tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1,\tau_2)$$

Proof

easy

GM (Institute of Computer Science @ UIBK) Game Theory

Observation

withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem fail

Example

	C_2	C_2		
C_1	M	F		
Rr	0,0	1, -1		
Rp	0.5, -0.5	0,0		
Pr	-0.5, 0.5	1,-1		
Рр	0,0	0,0		

- allow only the pure strategies
- we obtain

$$\max_{c_1 \in \{Rr, Rp, Pr, Pp\}} \min_{c_2 \in \{M, F\}} u_1(c_1, c_2) = \max\{0, 0, -0.5, 0\} = 0$$
$$\min_{c_2 \in \{M, F\}} \max_{c_1 \in \{Rr, Rp, Pr, Pp\}} u_1(c_1, c_2) = \min\{0.5, 1\} = 0.5 \neq 0$$

• Γ doesn't admit a pure equilibrium

Example (cont'd)

- proof of the theorem uses the existence of a Nash equilibrium, this is essential
- we need this for

$$\max_{\tau_1\in\Delta(C_1)}\min_{\tau_2\in\Delta(C_2)}u(\tau_1,\tau_2)=\min_{\tau_2\in\Delta(C_2)}\max_{\tau_1\in\Delta(C_1)}u(\tau_1,\tau_2)$$

Definition

an optimisation problem is defined as

```
minimise<sub>x \in \mathbb{R}^n</sub> f(x) subject to g_i(x) \ge 0 \forall i \in \{1, \ldots, m\}
```

where f, g_1, \ldots, g_m are functions from $\mathbb{R}^n \to \mathbb{R}$

Observation

two-person zero-sum games and optimisation problems are closely linked

GM (Institute of Computer Science @ UIBK) Game Theory
Two-Person Zero-Sum Games

Lemma

the optimisation problem

minimise_{$$x \in \mathbb{R}^n$$} $f(x)$ subject to $g_i(x) \ge 0$ $\forall i \in \{1, \ldots, m\}$

is equivalent to

$$\operatorname{minimise}_{x \in \mathbb{R}^n} (\max_{y \in \mathbb{R}^m_+} f(x) - \sum_{i=1}^m y_i g_i(x))$$
(1)

here
$$R^m_+ = \{(y_1, ..., y_m) \mid y_i \ge 0\}$$

Proof

observe that $\max_{y \in \mathbb{R}^m_+} (f(x) - \sum_{i=1}^m y_i g_i(x)) = f(x)$ if the constraints are met, otherwise it is $+\infty$

Definition the dual of (1) is defined as

maximise_{$$y \in \mathbb{R}^m_+$$} (min $f(x) - \sum_{i=1}^m y_i g_i(x)$)

Bayesian Equlibria

consider

$$\Gamma^{b} = (N, (C_{i})_{i \in N}, (T_{i})_{i \in N}, (p_{i})_{i \in N}, (u_{i})_{i \in N})$$

such that

- T_i is the set of types of player *i*; $T = \prod_{i \in N} T_i$
- p_i(·|t_i) ∈ Δ(T_{-i}) is the probability distribution over the types of the other players T_{-i}
- for each *i*: u_i : $C \times T \to \mathbb{R}$ is the expected utility payoff

Definition

- strategy for player *i* is a function $f: T \rightarrow C$
- randomised strategy profile $\sigma \in \prod_{i \in N} \prod_{t_i \in T_i} \Delta(C_i)$

DefinitionBayesian equilibrium
$$\sigma_i(\cdot|t_i) \in \operatorname{argmax}_{\tau_i \in \Delta(C_i)} \sum_{t_{-i} \in T_{-i}} p_i(t_{-i}|t_i) \sum_{c \in C} (\prod_{j \in N \setminus \{i\}} \sigma_j(c_j|t_j)) \tau_i(c_i) u_i(c, t)$$
GM (Institute of Computer Science @ UIBK)Game Theory