mputational gic

Game Theory

Georg Moser

Institute of Computer Science @ UIBK

Winter 2009

Definition

let $\sigma \in \prod_{i \in N} \Delta\left(C_{i}\right)$, let $u_{i}(\sigma)$ denote the expected utility payoff for player i, when players choose strategies according to σ :

$$
u_{i}(\sigma)=\sum_{c \in C}\left(\prod_{j \in N} \sigma_{j}\left(c_{j}\right)\right) u_{i}(c) \quad \text { for all } i \in N
$$

for $\tau_{i} \in \Delta\left(C_{i}\right)$, let $\left(\sigma_{-i}, \tau_{i}\right)$ denote the randomised strategy profile, where τ_{i} is substituted for σ_{i}, thus

$$
u_{i}\left(\sigma_{-i}, \tau_{i}\right)=\sum_{c \in C}\left(\prod_{j \in N \backslash\{i\}} \sigma_{j}\left(c_{j}\right)\right) \tau_{i}\left(c_{i}\right) u_{i}(c)
$$

Definition

Nash equilibrium
a randomised strategy profile σ is a Nash equilibrium of Γ if the following holds for all $i \in N$, and every $\tau_{i} \in \Delta\left(C_{i}\right)$

$$
u_{i}(\sigma) \geqslant u_{i}\left(\sigma_{-i}, \tau_{i}\right)
$$

Content

motivation, introduction to decision theory, decision theory
basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium
two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, subgame-perfect equilibra
(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Existence of Nash Equilibrium

Theorem

given a finite game Γ in strategic form, there exists at least one (Nash)
equilibrium in $\prod_{i \in N} \Delta\left(C_{i}\right)$

Example

	C_{2}	
C_{1}	M	F
$R r$	0,0	$1,-1$
$R p$	$0.5,-0.5$	0,0
$P r$	$-0.5,0.5$	$1,-1$
$P p$	0,0	0,0

then no pure equilibrium exists, and we can only eliminated $P p$
Fact
randomised strategies are needed for this theorem

Definition

the outcome of a game in Pareto efficient if there is no other outcome that would make all players better of
a game may have equilibria that are inefficient, and a game may have multiple equilibria

Example
prisoner dilemma

- the only equilibrium is $\left(\left[f_{1}\right],\left[f_{2}\right]\right)$ which is inefficient

GM (Institute of Computer Science © UIBK) Content.	er		
Example			
		C_{2}	
	C_{1}	f_{2}	s_{2}
	f_{1}	3,1	0,0
	s_{1}	0,0	1,3

- the game as two pure equilibria

$$
\left(\left[f_{1}\right],\left[f_{2}\right]\right) \quad\left(\left[s_{1}\right],\left[s_{2}\right]\right)
$$

- and one (inefficient) mixed equilibria

$$
\left(0.75\left[f_{1}\right]+0.25\left[s_{1}\right], 0.25\left[f_{2}\right]+0.75\left[s_{2}\right]\right)
$$

The Focal-Point Effect

Definition

focal-point effect
anything that tends to focus the players' attention on one equilibrium may make them all expect it and hence fulfil it; this is called focal-point effect

Example

battle of the sexes with communication

	C_{2}			
C_{1}	$f_{2} f_{2}$	$f_{2} s_{2}$	$s_{2} f_{2}$	$s_{2} s_{2}$
$F f_{1}$	3,1	3,1	0,0	0,0
$F s_{1}$	0,0	0,0	1,3	1,3
$S f_{1}$	3,1	0,0	3,1	0,0
$S s_{1}$	0,0	1,3	0,0	1,3

Definition

if a game can be influence by preplay communication, the player whose words are headed is called focal arbitrator

	C_{2}	
C_{1}	f_{2}	s_{2}
f_{1}	3,1	0,0
s_{1}	0,0	$\mathbf{1 , 3}$

Example
battle of the sexes (3)

	C_{2}	
C_{1}	f_{2}	s_{2}
f_{1}	3,1	0,0
s_{1}	0,0	1,3

- assumption: the man is Dr. Taub and he has recently confessed his adultery
- there are two players
- both can make demands for sum $[1,100]$ in $€$ i.e.,

$$
C_{1}=C_{2}=\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 100\}
$$

- the payoff function is defined as follows:

$$
u_{i}\left(c_{1}, c_{2}\right)= \begin{cases}0 & \text { if } c_{1}+c_{2}>100 \\ c_{i} & \text { if } c_{1}+c_{2} \leqslant 100\end{cases}
$$

Analysis

- any pair $(x, 100-x)$ is an equilibrium, on the other hand also the pair $(100,100)$ is an equilibrium
- an impartial moderator may suggest $(50,50)$ as it is efficient
- moreover $(50,50)$ has strong incentive, it is a focal equilibrium even if the moderator is absent

Evolution

Idea
Axelrod 1984
identify good strategies by a biological evolutionary criterion
Definition

- $L_{i} \subseteq \Delta\left(C_{i}\right)$ of promising randomised strategies
- \forall player i
- $\exists i$-animals that implement a strategy $\sigma_{i} \in L_{i}$
- each i-animal plays the game repeatedly using σ_{i}
- \forall player $j \neq i$
- let the j-animals randomly choose among the strategies in L_{j}
- define

$$
q_{j}^{k}\left(\sigma_{j}\right)=\frac{j \text {-animals that implement } \sigma_{j}}{\text { all } j \text {-animals }}
$$

(in generation k)

Definition

- define

$$
\bar{\sigma}_{-i}^{k}\left(c_{j}\right)=\sum_{\sigma_{j} \in L_{j}} q_{j}^{k}\left(\sigma_{j}\right) \sigma_{j}\left(c_{j}\right) \quad \forall j \in N, \forall c_{j} \in C_{j}
$$

- set $\bar{\sigma}^{k}=\left(\bar{\sigma}_{j}^{k}\right)_{j \in N}$
- and $\bar{u}_{i}^{k}\left(\sigma_{i}\right)=u_{i}\left(\bar{\sigma}_{-i}^{k}, \sigma_{i}\right)$

Definition

the number of children in the next generation $k+1$ depends on the expected payoff:

$$
q_{i}^{k+1}\left(\sigma_{i}\right)=\frac{q_{i}^{k}\left(\sigma_{i}\right) \bar{u}_{i}^{k}\left(\sigma_{i}\right)}{\sum_{\tau_{i} \in L_{i}} q_{i}^{k}\left(\sigma_{i}\right) \bar{u}_{i}^{k}\left(\tau_{i}\right)}
$$

"Definition"

strategies that survive in the end, are good
strategies that behave poorly can be crucial to determine which strategy reproduces best

Risk Dominance

Idea (2)
Harsanyi, Selten 1988
overcome this dependency on poor strategies, using risk dominance of
strategies

Definition

- \forall games Γ is strategic form
- $\forall \sigma, \tau$ equilibria in $\prod_{i \in N} \Delta\left(C_{i}\right)$ the resistance of σ against τ is the largest $\lambda \in[0,1]$ such that $\forall j \in N$:

$$
u_{i}\left(\left(\lambda \tau_{j}+(1-\lambda) \sigma_{j}\right)_{j \in N-\{i\}}, \sigma_{i}\right) \geqslant u_{i}\left(\left(\lambda \tau_{j}+(1-\lambda) \sigma_{j}\right)_{j \in N-\{i\}}, \tau_{i}\right)
$$

- an equilibrium σ risk dominates another equilibrium τ if the resistance of σ against τ is greater than the resistance of τ against σ

Note

the resistance measure the "evolutionary" strength of an equilibrium

Two-Person Zero-Sum Games

Example

	C_{2}	
C_{1}	M	F
$R r$	0,0	$1,-1$
$R p$	$0.5,-0.5$	0,0
$P r$	$-0.5,0.5$	$1,-1$
$P p$	0,0	0,0

Observation

$$
u_{1}\left(c_{1}, c_{2}\right)=-u_{2}\left(c_{1}, c_{2}\right) \quad \forall c_{1} \in\{R r, R p, \operatorname{Pr}, \operatorname{Pp}\} \quad \forall c_{2} \in\{M, F\}
$$

Definition

a two-person zero-sum game Γ in strategic form is a game
$\Gamma=\left(\{1,2\}, C_{1}, C_{2}, u_{1}, u_{2}\right): u_{1}\left(c_{1}, c_{2}\right)=-u_{2}\left(c_{1}, c_{2}\right) \forall c_{1} \in C_{1}, \forall c_{2} \in C_{2}$

Min-Max Theorem

Theorem

(σ_{1}, σ_{2}) is an equilibrium of a finite two-person zero-sum game
$\Gamma=\left(\{1,2\}, C_{1}, C_{2}, u_{1},-u_{1}\right)$ if and only if

$$
\begin{aligned}
& \sigma_{1} \in \operatorname{argmax}_{\tau_{1} \in \Delta\left(C_{1}\right)} \min _{\tau_{2} \in \Delta\left(C_{2}\right)} u_{1}\left(\tau_{1}, \tau_{2}\right) \\
& \sigma_{2} \in \operatorname{argmin}_{\tau_{2} \in \Delta\left(C_{2}\right)} \max _{\tau_{1} \in \Delta\left(C_{1}\right)} u_{1}\left(\tau_{1}, \tau_{2}\right)
\end{aligned}
$$

furthermore if (σ_{1}, σ_{2}) an equilibrium of Γ, then

$$
u_{1}\left(\sigma_{1}, \sigma_{2}\right)=\max _{\tau_{1} \in \Delta\left(C_{1}\right)} \min _{\tau_{2} \in \Delta\left(C_{2}\right)} u_{1}\left(\tau_{1}, \tau_{2}\right)=\min _{\tau_{2} \in \Delta\left(C_{2}\right)} \max _{\tau_{1} \in \Delta\left(C_{1}\right)} u_{1}\left(\tau_{1}, \tau_{2}\right)
$$

Proof

easy

Observation

withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem fail

Example

	C_{2}	
C_{1}	M	F
$R r$	0,0	$1,-1$
$R p$	$0.5,-0.5$	0,0
$P r$	$-0.5,0.5$	$1,-1$
$P p$	0,0	0,0

- allow only the pure strategies
- we obtain

$$
\begin{aligned}
& \max _{c_{1} \in\{R r, R p, P r, P p\}} \min _{c_{2} \in\{M, F\}} u_{1}\left(c_{1}, c_{2}\right)=\max \{0,0,-0.5,0\}=0 \\
& \min _{c_{2} \in\{M, F\}} \max _{c_{1} \in\{R r, R p, P r, P p\}} u_{1}\left(c_{1}, c_{2}\right)=\min \{0.5,1\}=0.5 \neq 0
\end{aligned}
$$

- 「 doesn't admit a pure equilibrium

Example (cont'd)

- proof of the theorem uses the existence of a Nash equilibrium, this is essential
- we need this for

$$
\max _{\tau_{1} \in \Delta\left(C_{1}\right)} \min _{\tau_{2} \in \Delta\left(C_{2}\right)} u\left(\tau_{1}, \tau_{2}\right)=\min _{\tau_{2} \in \Delta\left(C_{2}\right)} \max _{\tau_{1} \in \Delta\left(C_{1}\right)} u\left(\tau_{1}, \tau_{2}\right)
$$

Definition

an optimisation problem is defined as

$$
\operatorname{minimise}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } g_{i}(x) \geqslant 0 \quad \forall i \in\{1, \ldots, m\}
$$

where f, g_{1}, \ldots, g_{m} are functions from $\mathbb{R}^{n} \rightarrow \mathbb{R}$

Observation

two-person zero-sum games and optimisation problems are closely linked

Lemma

the optimisation problem

$$
\operatorname{minimise}_{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } g_{i}(x) \geqslant 0 \quad \forall i \in\{1, \ldots, m\}
$$

is equivalent to

$$
\begin{equation*}
\operatorname{minimise}_{x \in \mathbb{R}^{n}}\left(\max _{y \in \mathbb{R}_{+}^{m}} f(x)-\sum_{i=1}^{m} y_{i} g_{i}(x)\right) \tag{1}
\end{equation*}
$$

here $R_{+}^{m}=\left\{\left(y_{1}, \ldots, y_{m}\right) \mid y_{i} \geqslant 0\right\}$
Proof
observe that $\max _{y \in \mathbb{R}_{+}^{m}}\left(f(x)-\sum_{i=1}^{m} y_{i} g_{i}(x)\right)=f(x)$ if the constraints are met, otherwise it is $+\infty$

Definition

the dual of (1) is defined as

$$
\operatorname{maximise}_{y \in \mathbb{R}_{+}^{m}}\left(\min _{x \in \mathbb{R}^{n}} f(x)-\sum_{i=1}^{m} y_{i} g_{i}(x)\right)
$$

Bayesian Equlibria

consider

$$
\Gamma^{b}=\left(N,\left(C_{i}\right)_{i \in N},\left(T_{i}\right)_{i \in N},\left(p_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)
$$

such that

- T_{i} is the set of types of player $i ; T=\prod_{i \in N} T_{i}$
- $p_{i}\left(\cdot \mid t_{i}\right) \in \Delta\left(T_{-i}\right)$ is the probability distribution over the types of the other players T_{-i}
- for each $i: u_{i}: C \times T \rightarrow \mathbb{R}$ is the expected utility payoff

Definition

- strategy for player i is a function $f: T \rightarrow C$
- randomised strategy profile $\sigma \in \prod_{i \in N} \prod_{t_{i} \in T_{i}} \Delta\left(C_{i}\right)$
Definition
Bayesian equilibrium
$\sigma_{i}\left(\cdot \mid t_{i}\right) \in \operatorname{argmax}_{\tau_{i} \in \Delta\left(C_{i}\right)} \sum_{t_{-i} \in T_{-i}} p_{i}\left(t_{-i} \mid t_{i}\right) \sum_{c \in C}\left(\prod_{j \in N \backslash\{i\}} \sigma_{j}\left(c_{j} \mid t_{j}\right)\right) \tau_{i}\left(c_{i}\right) u_{i}(c, t)$

GM (Institute of Computer Science © UIBK)

