Game Theory Georg Moser Institute of Computer Science @ UIBK Winter 2009	Summary of Last Last Lecture Definition Bayesian games Bayesian game is a tuple $\Gamma^b = (N, (C_i)_{i \in N}, (T_i)_{i \in N}, (p_i)_{i \in N}, (u_i)_{i \in N})$ such that N is the set of players C_i is the set of players C_i is the set of actions of player i T_i is the set of types of player i Set $C = \prod_{i \in N} C_i$, $T = \prod_{i \in N} T_i$ Set $C = \prod_{i \in N} C_i$, $T = \prod_{i \in N} T_i$ For each $i: u_i: C \times T \to \mathbb{R}$ is the expected utility payoff Definition a strategy for player i in Γ^b is a function $f: T \to C$
GM (Institute of Computer Science @ UIBK) Game Theory 1/82	GM (Institute of Computer Science @ UIBK) Game Theory 20/82 Content
Definition let $\sigma \in \prod_{i \in N} \Delta(C_i)$, let $u_i(\sigma)$ denote the expected utility payoff for player <i>i</i> , when players choose strategies according to σ :	Content
$u_i(\sigma) = \sum ig(\prod \sigma_j(c_j)ig) u_i(c) \hspace{0.2cm} ext{ for all } i \in N$	motivation, introduction to decision theory, decision theory
$c \in C \ j \in N$ for $\tau_i \in \Delta(C_i)$, let (σ_{-i}, τ_i) denote the randomised strategy profile, where τ_i is substituted for σ_i , thus	basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium
$u_i(\sigma_{-i},\tau_i) = \sum_{c \in C} \left(\prod_{j \in N \setminus \{i\}} \sigma_j(c_j)\right) \tau_i(c_i) u_i(c)$	two-person zero-sum games, Bayesian equilibria, sequential equilibra of extensive-form games, subgame-perfect equilibra
Definition Nash equilibrium	(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Existence of Nash Equilibrium

Theorem

given a finite game Γ in strategic form, there exists at least one (Na equilibrium in $\prod_{i \in N} \Delta(C_i)$

Example

Game Theory

then no pure equilibrium exists, and we can only eliminated *Pp*

Fact

randomised strategies are needed for this theorem

Example

GM (Institute of Computer Science @ UIBK)

battle of the sexes

$$\begin{array}{c|c} & C_2 \\ \hline C_1 & f_2 & s_2 \\ \hline f_1 & 3,1 & 0,0 \\ s_1 & 0,0 & 1,3 \end{array}$$

• the game as two pure equilibria

 $([f_1], [f_2])$ $([s_1], [s_2])$

• and one (inefficient) mixed equilibria

$$(0.75[f_1] + 0.25[s_1], 0.25[f_2] + 0.75[s_2])$$

Nash 1951
(Nash)Definition
the outcome of a game in Pareto efficient if there is no other outcome that
would make all players better ofa game may have equilibria that are inefficient, and a game may have
multiple equilibriaExample
$$\frac{C_1}{g_2}$$
 $\frac{C_2}{g_1}$ f_1 $6,0$ f_1 f_2 f_2 f_3 f

• the only equilibrium is $([f_1], [f_2])$ which is inefficient

23/82 GM (Institute of Computer Science @ UIBK)

The Focal-Point Effect

Definition

focal-point effect

24/82

prisoner dilemma

anything that tends to focus the players' attention on one equilibrium may make them all expect it and hence fulfil it; this is called focal-point effect

Game Theory

Example

battle of the sexes with communication

			C_2	
C_1	$f_2 f_2$	f ₂ s ₂	<i>s</i> ₂ <i>f</i> ₂	<i>s</i> ₂ <i>s</i> ₂
Ff ₁	3,1	3,1	0,0	0,0
Fs_1	0,0	0,0	1,3	1,3
Sf_1	3,1	0,0	3,1	0,0
Ss ₁	0,0	1,3	0,0	1,3

Definition

if a game can be influence by preplay communication, the player whose words are headed is called focal arbitrator

Content	Content
Example battle of the sexes (2) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Example • there are two players • both can make demands for sum [1,100] in \in i.e., $C_1 = C_2 = \{x \in \mathbb{R} \mid 0 \le x \le 100\}$ • the payoff function is defined as follows:
Example battle of the sexes (3) $ \frac{C_2}{\begin{array}{c} C_1 & \overline{f_2} & s_2 \\ \hline{f_1} & 3,1 & 0,0 \\ s_1 & 0,0 & 1,3 \end{array}} $ • assumption: the man is Dr. Taub and he has recently confessed his adultery	 and payour function is dominant to formula? u_i(c₁, c₂) =
CM (Institute of Computer Science & IIIPI/) Come Theory 97/99	CM (Institute of Computer Science & IIIDV) Come Theory 2010
Evolution, Resistance, and Risk Dominance	Evolution, Resistance, and Risk Dominance
Evolution Idea Axelrod 1984 identify good strategies by a biological evolutionary criterion Definition • $L_i \subseteq \Delta(C_i)$ of promising randomised strategies • \forall player i • \exists <i>i</i> -animals that implement a strategy $\sigma_i \in L_i$ • each <i>i</i> -animal plays the game repeatedly using σ_i • \forall player $j \neq i$ • let the <i>j</i> -animals randomly choose among the strategies in L_j • define $q_j^k(\sigma_j) = \frac{j\text{-animals that implement }\sigma_j}{\text{all }j\text{-animals}}$ (in generation k)	Definition • define $ \overline{\sigma}_{-i}^{k}(c_{j}) = \sum_{\sigma_{j} \in L_{j}} q_{j}^{k}(\sigma_{j})\sigma_{j}(c_{j}) \forall j \in N, \forall c_{j} \in C_{j} $ • set $\overline{\sigma}^{k} = (\overline{\sigma}_{j}^{k})_{j \in N}$ • and $\overline{u}_{i}^{k}(\sigma_{i}) = u_{i}(\overline{\sigma}_{-i}^{k}, \sigma_{i})$ Definition the number of children in the next generation $k + 1$ depends on the expected payoff: $ q_{i}^{k+1}(\sigma_{i}) = \frac{q_{i}^{k}(\sigma_{i})\overline{u}_{i}^{k}(\sigma_{i})}{\sum_{\tau_{i} \in L_{i}} q_{i}^{k}(\sigma_{i})\overline{u}_{i}^{k}(\tau_{i})} $ "Definition" strategies that survive in the end, are good strategies that behave poorly can be crucial to determine which strategy
CM (Institute of Computer Science & LIIPIC) Comp Therein	CM (Institute of Computer Science & LIPK)

Game Theory

30/82

Evolution, Resistance, and Risk Dominance	Two-refson zero-sum Games
Risk Dominance Idea 2 Harsanyi, Selten 1988 overcome this dependency on poor strategies, using risk dominance of	Two-Person Zero-Sum Games Example
strategies	C_2
Definition	$\frac{C_1}{D}$ M F
• \forall games Γ is strategic form	$Rr \qquad 0,0 \qquad 1,-1$
• $\forall \sigma, \sigma, \sigma$ equilibria in $\prod = \Lambda(C_i)$ the resistance of σ against σ is the	Rp 0.5, -0.5 0.0 Pr -0.5 0.5 1 -1
• $\forall \delta, \tau$ equilibria in $\prod_{i \in N} \Delta(C_i)$ the resistance of δ against τ is the largest $\lambda \in [0, 1]$ such that $\forall j \in N$:	$\begin{array}{cccc} Pp & 0.0 & 0.0 \\ Pp & 0.0 & 0.0 \\ \end{array}$
$u_i((\lambda\tau_j+(1-\lambda)\sigma_j)_{j\in N-\{i\}},\sigma_i) \ge u_i((\lambda\tau_j+(1-\lambda)\sigma_j)_{j\in N-\{i\}},\tau_i)$	Observation
• an equilibrium σ risk dominates another equilibrium τ if the resistance of σ against τ is greater than the resistance of τ against σ	$u_1(c_1,c_2) = -u_2(c_1,c_2) \qquad \forall c_1 \in \{Rr,Rp,Pr,Pp\} \forall c_2 \in \{M,F\}$
	Definition
Note	a two-person zero-sum game Γ in strategic form is a game
the resistance measure the "evolutionary" strength of an equilibrium	$\Gamma = (\{1, 2\}, C_1, C_2, u_1, u_2): u_1(c_1, c_2) = -u_2(c_1, c_2) \ \forall c_1 \in C_1, \ \forall c_2 \in C_2$
GM (Institute of Computer Science @ UIBK) Game Theory 31/82	GM (Institute of Computer Science @ UIBK) Game Theory 32/8
Two-Person Zero-Sum Games	Two-Person Zero-Sum Games
Two-Person Zero-Sum Games Min-Max Theorem	Two-Person Zero-Sum Games Observation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min may theorem fail
Two-Person Zero-Sum Games Min-Max Theorem Theorem	Two-Person Zero-Sum Games Observation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem fail
Two-Person Zero-Sum Games Min-Max Theorem Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if	Two-Person Zero-Sum Games Observation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem fail Example
Two-Person Zero-Sum Games Min-Max Theorem Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$	Two-Person Zero-Sum Games Observation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem fail Example $\frac{C_1}{Rr} = \frac{C_2}{0.0} = 1 = 1$
Two-Person Zero-Sum Games Min-Max Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$	Two-Person Zero-Sum GamesObservationwithouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem failExample $\frac{C_1}{Rr}$ $\frac{C_2}{M}$ $\frac{C_1}{Rr}$ $0,0$ $1,-1$ Rp $0.5, -0.5$ $0,0$
Two-Person Zero-Sum Games Min-Max Theorem Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$	Two-Person Zero-Sum GamesObservation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem failExample $\frac{C_1}{M}$ $\frac{C_2}{M}$ $\frac{C_1}{Rr}$ $0,0$ $1,-1$ Rp $0.5,-0.5$ $0,0$ Pr $-0.5,0.5$ $1,-1$
Two-Person Zero-Sum Games Min-Max Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ furthermore if (σ_1, σ_2) an equilibrium of Γ , then	Two-Person Zero-Sum GamesObservation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem failExample $\frac{C_1}{M}$ $\frac{C_2}{M}$ $\frac{C_1}{Rr}$ $0,0$ $1,-1$ Rp $0.5, -0.5$ $0,0$ Pr $-0.5, 0.5$ $1, -1$ Pp $0,0$ $0,0$
Two-Person Zero-Sum Games Min-Max Theorem Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ furthermore if (σ_1, σ_2) an equilibrium of Γ , then	Two-Person Zero-Sum GamesObservationwithouth randomised strategies, the existence of an equilibrium cannot beguranteed and the min-max theorem failExample
Two-Person Zero-Sum Games Min-Max Theorem Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ furthermore if (σ_1, σ_2) an equilibrium of Γ , then $u_1(\sigma_1, \sigma_2) = \max_{\sigma \in C_2} \min_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2) = \min_{\sigma \in C_2} \max_{\sigma \in C_2} u_1(\tau_1, \tau_2)$	Two-Person Zero-Sum GamesObservationwithouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem failExample $\frac{C_1}{M}$ $\frac{C_2}{M}$ $\frac{C_1}{Rr}$ $0,0$ $1,-1$ Rp $0.5,-0.5$ $0,0$ Pr $-0.5,0.5$ $1,-1$ Pp $0,0$ $0,0$ • allow only the pure strategies• we obtain
Two-Person Zero-Sum Games Min-Max Theorem Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ furthermore if (σ_1, σ_2) an equilibrium of Γ , then $u_1(\sigma_1, \sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$	Two-Person Zero-Sum GamesObservationwithouth randomised strategies, the existence of an equilibrium cannot beguranteed and the min-max theorem failExample $\frac{C_1}{M}$ $\frac{C_2}{M}$ $\frac{C_1}{Rr}$ $0,0$ $1,-1$ Rp $0.5,-0.5$ $0,0$ Pr $-0.5,0.5$ $1,-1$ Pp $0,0$ $0,0$ • allow only the pure strategies• we obtain $\sum_{c_1 \in \{Rr, Rp, Pr, Pp\}} \sum_{c_2 \in \{M, F\}} u_1(c_1, c_2) = \max\{0, 0, -0.5, 0\} = 0$
Two-Person Zero-Sum Games Min-Max Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ furthermore if (σ_1, σ_2) an equilibrium of Γ , then $u_1(\sigma_1, \sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ Proof	Two-Person Zero-Sum GamesObservationwithouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem failExample $\frac{C_1}{M}$ $\frac{C_2}{M}$ $\frac{C_1}{Rr}$ $0,0$ $1,-1$ Rp $0.5, -0.5$ $0,0$ Pr $-0.5, 0.5$ $1, -1$ Pp $0,0$ $0,0$ • allow only the pure strategies• we obtain $\sum_{c_1 \in \{Rr, Rp, Pr, Pp\}} c_2 \in \{M, F\}$ $u_1(c_1, c_2) = max\{0, 0, -0.5, 0\} = 0$ $\min_{c_2 \in \{M, F\}} c_1 \in \{Rr, Rp, Pr, Pp\}$ $u_1(c_1, c_2) = min\{0.5, 1\} = 0.5 \neq 0$
Two-Person Zero-Sum Games Min-Max Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ furthermore if (σ_1, σ_2) an equilibrium of Γ , then $u_1(\sigma_1, \sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$ Proof easy	Two-Person Zero Sum Games Observation withouth randomised strategies, the existence of an equilibrium cannot be guranteed and the min-max theorem fail Example $\frac{C_1}{Rr} \frac{C_2}{M} \frac{F}{Rr}$ $\frac{C_2}{Rr} \frac{C_2}{Rr}$ $\frac{C_1}{Rr} \frac{C_2}{Rr}$ $\frac{C_2}{Rr} \frac{F}{Rr} \frac{1}{Rr} \frac{1}{Rr} \frac{F}{Rr}$ $\frac{Rr}{Rr} \frac{1}{Rr} \frac{1}{Rr} \frac{1}{Rr} \frac{1}{Rr}$ $\frac{1}{Rr} \frac{1}{Rr} \frac{1}{Rr} \frac{1}{Rr} \frac{1}{Rr}$ $\frac{1}{Rr} \frac{1}{Rr} $

Two-Person Zero-Sum Games

Example (cont'd)

- proof of the theorem uses the existence of a Nash equilibrium, this is essential
- we need this for

 $\max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u(\tau_1, \tau_2)$

Definition

an optimisation problem is defined as

 $\mathsf{minimise}_{x \in \mathbb{R}^n} f(x) \qquad \mathsf{subject to } g_i(x) \geqslant 0 \quad \forall i \in \{1, \dots, m\}$

where f, g_1, \ldots, g_m are functions from $\mathbb{R}^n \to \mathbb{R}$

Observation

two-person zero-sum games and optimisation problems are closely linked

GM (Institute of Computer Science @ UIBK Two-Person Zero-Sum Games

Bayesian Equlibria

consider

 $\Gamma^{b} = (N, (C_{i})_{i \in N}, (T_{i})_{i \in N}, (p_{i})_{i \in N}, (u_{i})_{i \in N})$

such that

- T_i is the set of types of player i; $T = \prod_{i \in N} T_i$
- p_i(·|t_i) ∈ Δ(T_{-i}) is the probability distribution over the types of the other players T_{-i}
- for each *i*: u_i : $C \times T \to \mathbb{R}$ is the expected utility payoff

Definition

- strategy for player *i* is a function $f: T \rightarrow C$
- randomised strategy profile $\sigma \in \prod_{i \in N} \prod_{t_i \in T_i} \Delta(C_i)$

$\begin{array}{ll} \text{Definition} & \text{Bayesian equilibrium} \\ \sigma_{i}(\cdot|t_{i}) \in \operatorname{argmax}_{\tau_{i} \in \Delta(C_{i})} \sum_{t_{-i} \in T_{-i}} p_{i}(t_{-i}|t_{i}) \sum_{c \in C} (\prod_{j \in N \setminus \{i\}} \sigma_{j}(c_{j}|t_{j})) \tau_{i}(c_{i}) u_{i}(c, t) \\ \\ \text{GM (Institute of Computer Science @ UBK)} & \text{Game Theory} & 37/82 \end{array}$

Two-Person Zero-Sum Game

Lemma

the optimisation problem

minimise_{$x \in \mathbb{R}^n$} f(x) subject to $g_i(x)$

bject to
$$g_i(x) \geqslant 0 \quad \forall i \in \{1, \dots, m\}$$

is equivalent to

minimise_{$$x \in \mathbb{R}^n$$} $(\max_{y \in \mathbb{R}^m_+} f(x) - \sum_{i=1}^m y_i g_i(x))$ (1)

here
$$R^m_+ = \{(y_1, \ldots, y_m) \mid y_i \geqslant 0\}$$

Proof

35/82

observe that $\max_{y \in \mathbb{R}^m_+} (f(x) - \sum_{i=1}^m y_i g_i(x)) = f(x)$ if the constraints are met, otherwise it is $+\infty$

Definition

the dual of (1) is defined as

GM (Institute of Computer Science @ UIBK)

$$\text{maximise}_{y \in \mathbb{R}^m_+} (\min_{x \in \mathbb{R}^n} f(x) - \sum_{i=1}^m y_i g_i(x))$$

Game Theory