



#### Summary of Last Lecture

#### Definition

a two-person zero-sum game  $\Gamma$  in strategic form is a game  $\Gamma = (\{1, 2\}, C_1, C_2, u_1, u_2)$ :  $u_1(c_1, c_2) = -u_2(c_1, c_2) \ \forall c_1 \in C_1, \ \forall c_2 \in C_2$ 

#### Example

|       | $C_2$     |       |
|-------|-----------|-------|
| $C_1$ | M         | F     |
| Rr    | 0,0       | 1, -1 |
| Rp    | 0.5, -0.5 | 0,0   |
| Pr    | -0.5, 0.5 | 1,-1  |
| Pр    | 0,0       | 0,0   |

#### Observation

$$u_1(c_1, c_2) = -u_2(c_1, c_2)$$

 $\forall c_1 \in \{Rr, Rp, Pr, Pp\} \quad \forall c_2 \in \{M, F\}$ 

#### Min-Max Theorem

#### Theorem

 $(\sigma_1, \sigma_2)$  is an equilibrium of a finite two-person zero-sum game  $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$  if and only if

$$\sigma_{1} \in \operatorname{argmax}_{\tau_{1} \in \Delta(C_{1})} \min_{\substack{\tau_{2} \in \Delta(C_{2}) \\ \tau_{1} \in \Delta(C_{2})}} u_{1}(\tau_{1}, \tau_{2})$$
  
$$\sigma_{2} \in \operatorname{argmin}_{\tau_{2} \in \Delta(C_{2})} \max_{\substack{\tau_{1} \in \Delta(C_{1}) \\ \tau_{1} \in \Delta(C_{1})}} u_{1}(\tau_{1}, \tau_{2})$$

furthermore if  $(\sigma_1, \sigma_2)$  an equilibrium of  $\Gamma$ , then

$$u_1(\sigma_1, \sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$$

#### Observation

without randomised strategies, the existence of an equilibrium cannot be guaranteed and the min-max theorem fail

Game Theory

GM (Institute of Computer Science @ UIBK

Bayesian Equilibria

consider

$$\Gamma^{b} = (N, (C_{i})_{i \in N}, (T_{i})_{i \in N}, (p_{i})_{i \in N}, (u_{i})_{i \in N})$$

such that

- $T_i$  is the set of types of player *i*;  $T = \prod_{i \in N} T_i$
- $p_i(\cdot|t_i) \in \Delta(T_{-i})$  is the probability distribution over the types of the other players  $T_{-i}$
- for each *i*:  $u_i: C \times T \to \mathbb{R}$  is the expected utility payoff

#### Definition

- strategy for player *i* is a function  $f: T \rightarrow C$
- randomised strategy profile  $\sigma \in \prod_{i \in N} \prod_{t_i \in T_i} \Delta(C_i)$

#### Definition

Bayesian equilibrium  $\sigma_i(\cdot|t_i) \in \operatorname{argmax}_{\tau_i \in \Delta(C_i)} \sum_{t_{-i} \in \mathcal{T}_{-i}} p_i(t_{-i}|t_i) \sum_{c \in C} (\prod_{i \in N \setminus \{i\}} \sigma_j(c_j|t_j)) \tau_i(c_i) u_i(c,t)$  $\overline{c\in C} \ j\in N\setminus\{i\}$ 

#### Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium

two-person zero-sum games, Bayesian equilibria, sequential equilibria of extensive-form games, subgame-perfect equilibria

(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Game Theory

GM (Institute of Computer Science @ UIBK) Purification

# Purification of Randomised Strategies

# Example consider the following game

|       | $C_2$ |       |
|-------|-------|-------|
| $C_1$ | L     | R     |
| Т     | 0,0   | 0, -1 |
| В     | 1, 0  | -1, 3 |

#### Observation

• the unique equilibrium is

$$(\frac{3}{4}[T] + \frac{1}{4}[B], \frac{1}{2}[L] + \frac{1}{2}[R])$$

- ([T], [L]) are pay-off equivalent to equilibrium
- ([*T*], [*L*]) is not an equilibrium

41/50

complete information

#### Purification

#### Example

incomplete information

let  $\alpha, \beta, \epsilon \in [0, 1]$ ,  $\alpha$  is known to player 1 (not player 2),  $\beta$  is known to player 2 (not player 1)

$$\begin{array}{c|c} & C_2 \\ \hline C_1 & L & R \\ \hline T & \epsilon \cdot \alpha, \epsilon \cdot \beta & \epsilon \cdot \alpha, -1 \\ B & 1, \epsilon \cdot \beta & -1, 3 \end{array}$$

given  $\epsilon \exists$  unique Bayesian equilibrium  $(\sigma_1, \sigma_2)$ 

$$\sigma_{1}(\cdot|\alpha) = \begin{cases} [T] & \alpha > \frac{2+\epsilon}{8+\epsilon^{2}} \\ [B] & \alpha < \frac{2+\epsilon}{8+\epsilon^{2}} \end{cases} \qquad \sigma_{2}(\cdot|\beta) = \begin{cases} [L] & \beta > \frac{4-\epsilon}{8+\epsilon^{2}} \\ [B] & \beta < \frac{4-\epsilon}{8+\epsilon^{2}} \end{cases}$$

#### Observation

if  $\epsilon \to 0$ , the Bayesian equilibrium  $(\sigma_1, \sigma_2)$  becomes the unique equilibrium in the game with complete information

Game Theory

## Auctions

#### Example

consider the following Bayesian game

- there are *n* bidders in an auction for a single object
- each player submits a sealed bid  $b_i$
- each player know the value of the object to him
- the highest bid wins
- let  $b = (b_1, \ldots, b_n)$  the profile of bids;  $v = (v_1, \ldots, v_n)$  the profile of values
- expected payoff for player *i*

$$u_i(b, v) = \begin{cases} v_i - b_i & \{i\} = \operatorname{argmax}_{j \in [1, n]} b_j \\ 0 & \text{otherwise} \end{cases}$$

#### Definition

- let F be an increasing and differentiable function
- $\forall$  players, F(w) denotes the probability that player values the object with less than w

#### Equilibrium Analysis

- let M be the maximal value and set β: [1, n] → [0, M]; β is the bidding function, assumed to be increasing and differentiable
- in the equilibrium, player *i* expects the other players to bid in the interval  $[0, \beta(M)]$
- suppose player *i*'s value is  $v_i$ , but submits bid  $\beta(w_i)$
- player j will submit bid  $< \beta(w_i)$  if  $\beta(v_j) < \beta(w_i)$
- hence  $v_j < w_i$  and probability that  $\beta(w_i)$  wins is  $F(w_i)^{n-1}$

#### Lemma

expected payoff to player *i* bidding  $\beta(w_i)$  is

$$(v_i - \beta(w_i)) \cdot F(w_i)^{n-1}$$

for value  $v_i$ , bid ought to be  $\beta(v_i)$ , hence

$$0 = (v_i - \beta(v_i))[F(v_i)]'(n-1)F(v_i)^{n-2} - \beta'(v_i)F(v_i)^{n-1}$$

Game Theory

GM (Institute of Computer Science @ UIBK) Auctions

Lemma

let  $\beta$ , F as above, then

$$\beta(x)F(x)^{n-1} = \int_0^x y(n-1)F(y)^{n-2}F'(y)dy$$

#### Lemma

assume types/bids are uniformly distributed  $(F(y) = \frac{y}{M})$ :

$$\beta(\mathbf{v}_i) = (1 - \frac{1}{n})\mathbf{v}_i \qquad \forall \mathbf{v}_i \in [0, M]$$

#### Definition

• an auction where the private values are independent is called independent private values

the auction studied is of this form

• if the value of the object is the same for all bidders, but the bidders have different private information, the auction is an common value auction

#### Auctions

#### Example

consider a two-bidder auction with a single object with unknown common value

- $x_0$ ,  $x_1$ ,  $x_2$  independent random variables
- value of object for highest bidder

 $A_0x_0 + A_1x_1 + A_2x_2$   $A_i$  are nonnegative constants

- $A_i$  is publicly known; player 1 knows  $x_0$ ,  $x_1$ , player 2 know  $x_0$ ,  $x_2$
- bids  $c_1$ ,  $c_2$ , if the bids tie a coin toss decides
- utility payoff function for player i (the other player is denoted as j)

$$u_i(c_1, c_2, (x_0, x_1), (x_0, x_2)) = \begin{cases} A_0 x_0 + A_1 x_1 + A_2 x_2 - c_i & c_i > c_j \\ \frac{1}{2}(A_0 x_0 + A_1 x_1 + A_2 x_2 - c_i) & c_i = c_j \\ 0 & \text{otherwise} \end{cases}$$

the unique Bayesian equilibrium is (for player 1, 2 respectively)

$$A_0x_0 + 0.5(A_1 + A_2)x_1$$
  $A_0x_0 + 0.5(A_1 + A_2)x_2$ 

GM (Institute of Computer Science @ UIBK) Game Theory Infinite Strategy Sets

## Infinite Strategy Sets

we extend the set of strategies to comprise the real interval [0, 1]

#### Definition

• a metric space is a set M together with the metric  $\delta: M \times M \to \mathbb{R}$  such that

$$\begin{split} \delta(x,y) &= \delta(y,x) \geqslant 0\\ \delta(x,y) &= 0 & \text{if } x = y\\ \delta(x,y) &+ \delta(y,z) \geqslant \delta(x,z) \end{split}$$

- $B(x, \epsilon)$  denotes the open sphere with distance  $\epsilon$
- a set is an open subset of M if for every  $x \in S \exists B(x, \epsilon) \subseteq S$
- a set  $N \subseteq M$  is closed if  $M \setminus N$  is open
- a metric space is compact if every collection of open sets that covers *M* has a finite sub-collection that covers *M*

#### Definition

let  $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$  be a game such that •  $C_i$  is a compact metric space

#### Game Theory

#### Borel Subsets

probability distributions need to be defined for subsets of  $C_i$ ; for that we consider measurable sets

unfortunately, for technical reasons, it may be mathematically impossible to consistently assign probabilities to all subsets [...]

#### Definition

- the class of measurable subsets of C<sub>i</sub> is the smallest class of subsets that include open subsets, closed subsets and all finite or countable infinite unions and intersections of sets in the class
- $\sigma_i \in \Delta(C_i)$  if  $\sigma_i$  is a function that assigns a non-negative number  $\sigma_i(Q)$  to each measurable subsets  $Q \subseteq C_i$

Game Theory

•  $\sigma_i(C_i) = 1$  and

$$\sigma_i(\bigcup_{k\geq 1}Q_k=\sum_{k\geq 1}\sigma_i(Q_k)$$

 ∃ metric (the Prohorov metric) such that Δ(C<sub>i</sub>) is compact metric space

GM (Institute of Computer Science @ UIBK) Infinite Strategy Sets

## Existence of Equilibrium

#### Definition

a function g: C → R is measurable if ∀ x ∈ ℝ the following is measurable

$${c \in C \mid g(c) \ge x}$$

- a function g is bounded if  $\exists K$  such that  $|g(c)| \leq K$
- utility functions are bounded and measurable

#### Definition

# let $\sigma \in \prod_{i \in N} \Delta(C_i)$ be a randomised strategy profile in, then $u_i(\sigma) = \int_{c_n \in C_n} \cdots \int_{c_1 \in C_1} u_i(c) d\sigma_1(c_1) \dots d\sigma_n(c_n)$

#### Theorem

Nash's theorem of the existence of an equilibrium is extensible to games over infinite strategy sets

utility function