mp	utational
gic	

Summary of Last Lecture

Definition

a two-person zero-sum game Γ in strategic form is a game

$$\Gamma = (\{1,2\}, C_1, C_2, u_1, u_2): \ u_1(c_1, c_2) = -u_2(c_1, c_2) \ \forall c_1 \in C_1, \ \forall c_2 \in C_2$$

Example

		Game Theory							
					_	C_2			
		Georg Moser			C_1	Μ	F		
				Rr	0,0	1, -1			
	Instit	tute of Computer Science @ UIBK			Rp	0.5, -0.5	0,0		
	16734SIGI				Pr	-0.5, 0.5	1,-1		
	Ferry was	Winter 2009			Pр	0,0	0,0		
				Observation $u_1(c_1, c_2) = -u_2($	(c ₁ , c ₂)	$\forall c_1 \in \{Rr, r\}$	Rp, Pr, Pp}	$\forall c_2 \in \{M, F\}$	}
	GM (Institute of Computer Science @ UIBK)	Game Theory	1/50	GM (Institute of Computer Science @ UI	BK)	Game Theory			38/

Min-Max Theorem

Theorem

 (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if

$$\sigma_{1} \in \operatorname{argmax}_{\tau_{1} \in \Delta(C_{1})} \min_{\tau_{2} \in \Delta(C_{2})} u_{1}(\tau_{1}, \tau_{2})$$

$$\sigma_{2} \in \operatorname{argmin}_{\tau_{2} \in \Delta(C_{2})} \max_{\tau_{1} \in \Delta(C_{1})} u_{1}(\tau_{1}, \tau_{2})$$

Game Theory

furthermore if (σ_1, σ_2) an equilibrium of Γ , then

$$u_1(\sigma_1, \sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$$

Observation

without randomised strategies, the existence of an equilibrium cannot be guaranteed and the min-max theorem fail

Bayesian Equilibria

consider

$$\Gamma^{b} = (N, (C_{i})_{i \in N}, (T_{i})_{i \in N}, (p_{i})_{i \in N}, (u_{i})_{i \in N})$$

 $c \in C \ j \in N \setminus \{i\}$

such that

- T_i is the set of types of player *i*; $T = \prod_{i \in N} T_i$
- $p_i(\cdot|t_i) \in \Delta(T_{-i})$ is the probability distribution over the types of the other players T_{-i}
- for each *i*: $u_i: C \times T \to \mathbb{R}$ is the expected utility payoff

Game Theory

Definition

- strategy for player *i* is a function $f: T \rightarrow C$
- randomised strategy profile $\sigma \in \prod_{i \in N} \prod_{t_i \in T_i} \Delta(C_i)$

Definition

 $\sigma_i(\cdot|t_i) \in \operatorname{argmax}_{\tau_i \in \Delta(C_i)} \sum p_i(t_{-i}|t_i) \sum (\prod \sigma_j(c_j|t_j)) \tau_i(c_i) u_i(c,t)$ $t_{-i} \in T_{-i}$

Bayesian equilibrium

Content

Content

motivation, introduction to decision theory, decision theory

basic model of game theory, dominated strategies, common knowledge, Bayesian games, incomplete information, Nash equilibrium

two-person zero-sum games, Bayesian equilibria, sequential equilibria of extensive-form games, subgame-perfect equilibria

(efficient) computation of Nash equilibria, complexity class PPAD, complexity of Nash equilibria, refinements of equilibrium in strategic form, persistent equilibria, games with communication, sender-receiver games

Purification of Randomised Strategies

Example consider the following game

complete information

	C_2			
C_1	L	R		
Т	0,0	0, -1		
В	1,0	-1, 3		

Observation

• the unique equilibrium is

$$\frac{3}{4}[T] + \frac{1}{4}[B], \frac{1}{2}[L] + \frac{1}{2}[R])$$

- ([T], [L]) are pay-off equivalent to equilibrium
- ([*T*], [*L*]) is not an equilibrium

Game Theory GM (Institute of Computer Science @ UIBK GM (Institute of Computer Science @ UIBK) Auctions Example incomplete information let $\alpha, \beta, \epsilon \in [0, 1]$, α is known to player 1 (not player 2), β is known to Example player 2 (not player 1) consider the following Bayesian game • there are *n* bidders in an auction for a single object $\frac{C_1}{T} \frac{L}{\epsilon \cdot \alpha, \epsilon \cdot \beta} \frac{R}{\epsilon \cdot \alpha, -1}$ • each player submits a sealed bid b_i • each player know the value of the object to him • the highest bid wins • let $b = (b_1, \ldots, b_n)$ the profile of bids; $v = (v_1, \ldots, v_n)$ the profile of given $\epsilon \exists$ unique Bayesian equilibrium (σ_1, σ_2) values $\sigma_{1}(\cdot|\alpha) = \begin{cases} [T] & \alpha > \frac{2+\epsilon}{8+\epsilon^{2}} \\ [B] & \alpha < \frac{2+\epsilon}{8+\epsilon^{2}} \end{cases} \qquad \sigma_{2}(\cdot|\beta) = \begin{cases} [L] & \beta > \frac{4-\epsilon}{8+\epsilon^{2}} \\ [B] & \beta < \frac{4-\epsilon}{8+\epsilon^{2}} \end{cases}$ • expected payoff for player *i* $u_i(b, v) = \begin{cases} v_i - b_i & \{i\} = \operatorname{argmax}_{j \in [1, n]} b_j \\ 0 & \text{otherwise} \end{cases}$

Observation

if $\epsilon \to 0$, the Bayesian equilibrium (σ_1, σ_2) becomes the unique equilibrium in the game with complete information

Definition

- let F be an increasing and differentiable function
- ∀ players, F(w) denotes the probability that player values the object with less than w

Game Theory

Equilibrium Analysis

- let M be the maximal value and set $\beta : [1, n] \rightarrow [0, M]$; β is the bidding function, assumed to be increasing and differentiable
- in the equilibrium, player *i* expects the other players to bid in the interval [0, β(M)]
- suppose player *i*'s value is v_i , but submits bid $\beta(w_i)$
- player j will submit bid $< \beta(w_i)$ if $\beta(v_j) < \beta(w_i)$
- hence $v_j < w_i$ and probability that $\beta(w_i)$ wins is $F(w_i)^{n-1}$

Lemma

expected payoff to player *i* bidding $\beta(w_i)$ is

$$(v_i - \beta(w_i)) \cdot F(w_i)^{n-1}$$

for value v_i , bid ought to be $\beta(v_i)$, hence

$$0 = (v_i - \beta(v_i))[F(v_i)]'(n-1)F(v_i)^{n-2} - \beta'(v_i)F(v_i)^{n-1}$$

Lemma

let β , F as above, then

$$\beta(x)F(x)^{n-1} = \int_0^x y(n-1)F(y)^{n-2}F'(y)dy$$

Lemma

assume types/bids are uniformly distributed $(F(y) = \frac{y}{M})$:

$$\beta(v_i) = (1 - \frac{1}{n})v_i \qquad \forall v_i \in [0, M]$$

Definition

• an auction where the private values are independent is called independent private values

the auction studied is of this form

• if the value of the object is the same for all bidders, but the bidders have different private information, the auction is an common value auction

$A_{0}x_{0} + A_{1}x_{1} + A_{2}x_{2} \qquad A_{i} \text{ are nonnegative constants}$ $A_{i} \text{ is publicly known; player 1 knows } x_{0}, x_{1}, \text{ player 2 know } x_{0}, x_{2}$ $bids c_{1}, c_{2}, \text{ if the bids tie a coin toss decides}$ $d(x, y) = 0 \qquad \text{if } x = y$ $\delta(x, y) + \delta(y, z) \ge \delta(x, z)$ $B(x, \epsilon) \text{ denotes the open sphere with distance } \epsilon$	GM (Institute of Computer Science @ UIBK) Game Theory 45/50	GM (Institute of Computer Science @ UIBK) Game Theory	46/50
consider a two-bidder auction with a single object with unknown common value • x_0, x_1, x_2 independent random variables • value of object for highest bidder $A_0x_0 + A_1x_1 + A_2x_2$ A_i are nonnegative constants • A_i is publicly known; player 1 knows x_0, x_1 , player 2 know x_0, x_2 • bids c_1, c_2 , if the bids tie a coin toss decides • utility payoff function for player <i>i</i> (the other player is denoted as <i>j</i>) • $B(x, \epsilon)$ denotes the open sphere with distance ϵ	Auctions	Infinite Strategy Sets	
$\begin{bmatrix} u_i(c_1, c_2, (x_0, x_1), (x_0, x_2)) - \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(A_0x_0 + A_1x_1 + A_2x_2 - c_i) & c_i = c_j \\ 0 & \text{otherwise} \end{bmatrix}$ • a metric space is compact if every collection of open sets that cov <i>M</i> has a finite sub-collection that covers <i>M</i>	consider a two-bidder auction with a single object with unknown common value • x_0, x_1, x_2 independent random variables • value of object for highest bidder $A_0x_0 + A_1x_1 + A_2x_2$ A_i are nonnegative constants • A_i is publicly known; player 1 knows x_0, x_1 , player 2 know x_0, x_2 • bids c_1, c_2 , if the bids tie a coin toss decides • utility payoff function for player <i>i</i> (the other player is denoted as <i>j</i>) $u_i(c_1, c_2, (x_0, x_1), (x_0, x_2)) = \begin{cases} A_0x_0 + A_1x_1 + A_2x_2 - c_i & c_i > c_j \\ \frac{1}{2}(A_0x_0 + A_1x_1 + A_2x_2 - c_i) & c_i = c_j \end{cases}$	we extend the set of strategies to comprise the real interval $[0,1]$ Definition • a metric space is a set M together with the metric $\delta \colon M \times M \to \mathbb{R}$ such that $\delta(x,y) = \delta(y,x) \ge 0$ $\delta(x,y) = 0$ if $x = y$ $\delta(x,y) + \delta(y,z) \ge \delta(x,z)$ • $B(x,\epsilon)$ denotes the open sphere with distance ϵ • a set is an open subset of M if for every $x \in S \exists B(x,\epsilon) \subseteq S$ • a set $N \subseteq M$ is closed if $M \setminus N$ is open • a metric space is compact if every collection of open sets that cover	

Definition

let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$ be a game such that • C_i is a compact metric space

Game Theory

 $A_0x_0 + 0.5(A_1 + A_2)x_1$ $A_0x_0 + 0.5(A_1 + A_2)x_2$

the unique Bayesian equilibrium is (for player 1, 2 respectively)

Infinite Strategy Sets

Borel Subsets

probability distributions need to be defined for subsets of C_i ; for that we consider measurable sets

unfortunately, for technical reasons, it may be mathematically impossible to consistently assign probabilities to all subsets [...]

Definition

- the class of measurable subsets of C_i is the smallest class of subsets that include open subsets, closed subsets and all finite or countable infinite unions and intersections of sets in the class
- $\sigma_i \in \Delta(C_i)$ if σ_i is a function that assigns a non-negative number $\sigma_i(Q)$ to each measurable subsets $Q \subseteq C_i$

Game Theory

• $\sigma_i(C_i) = 1$ and

GM (Institute of Computer Science @ UIBK)

$$\sigma_i(\bigcup_{k\ge 1}Q_k=\sum_{k\ge 1}\sigma_i(Q_k)$$

 ∃ metric (the Prohorov metric) such that Δ(C_i) is compact metric space inite Strategy Sets

Existence of Equilibrium

Definition

• a function $g: C \to R$ is measurable if $\forall x \in \mathbb{R}$ the following is measurable

$${c \in C \mid g(c) \ge x}$$

- a function g is bounded if $\exists K$ such that $|g(c)| \leq K$
- utility functions are bounded and measurable

Definition

let
$$\sigma \in \prod_{i \in \mathbb{N}} \Delta(C_i)$$
 be a randomised strategy profile in, then

$$u_i(\sigma) = \int_{c_n \in C_n} \cdots \int_{c_1 \in C_1} u_i(c) d\sigma_1(c_1) \dots d\sigma_n(c_n)$$

Theorem

49/50 GM (Institute of Computer Science @ UIBK)

Nash's theorem of the existence of an equilibrium is extensible to games over infinite strategy sets

Game Theory

50/50