
OLCmputational
gic

Introduction to Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

WS 2009/2010

RT (ICS @ UIBK) Chapter 3 1/56

Outline

Specifying Linear Time Properties

LTL - Linear Time Logic
Syntax
Semantics
Equivalences

LTL Model Checking
Overview
Transforming LTL into GNBAs
Complexity of LTL Model Checking

RT (ICS @ UIBK) Chapter 3 2/56

Specifying Linear Time Properties

Outline

Specifying Linear Time Properties

LTL - Linear Time Logic
Syntax
Semantics
Equivalences

LTL Model Checking
Overview
Transforming LTL into GNBAs
Complexity of LTL Model Checking

RT (ICS @ UIBK) Chapter 3 3/56

Specifying Linear Time Properties

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

this section

RT (ICS @ UIBK) Chapter 3 4/56

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws09/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Specifying Linear Time Properties

Requirements 6= Specification

requirements
• high-level description (consider scheduler for exclusive access)

• (the scheduler should be correct)
• no two clients get access at the same time
• the scheduler should be fair
• there is no deadlock

• what we observe from system: Traces(TS) ⊆ (2AP)ω

⇒ how to answer question “does system satisfy requirements”?
problem: to imprecise

⇒ we need requirements in a precise, i.e., mathematical specification

RT (ICS @ UIBK) Chapter 3 5/56

Specifying Linear Time Properties

Linear Time Properties

one main idea to specify requirements: describe allowed traces

• specification is set S ⊆ (2AP)ω (linear time property)

• system TS satisfies S iff every trace of TS is allowed w.r.t. S:

Traces(TS) ⊆ S
• model checking of linear time properties:

given Traces(TS) and S, answer Traces(TS) ⊆ S
⇒ precise formulation, no ambiguity

• upcoming problems
• how to specify sets S conveniently . . .
• . . . such that Traces(TS) ⊆ S can be decided

RT (ICS @ UIBK) Chapter 3 6/56

LTL - Linear Time Logic

Outline

Specifying Linear Time Properties

LTL - Linear Time Logic
Syntax
Semantics
Equivalences

LTL Model Checking
Overview
Transforming LTL into GNBAs
Complexity of LTL Model Checking

RT (ICS @ UIBK) Chapter 3 7/56

LTL - Linear Time Logic

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

this section

RT (ICS @ UIBK) Chapter 3 8/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL - Linear Time Logic Syntax

Syntax of Linear Temporal Logic

modal logic over infinite sequences [Pnueli 1977]

• propositional logic
• true
• a, paid, sprite, . . . ∈ AP atomic proposition
• ¬ϕ and ϕ ∧ ψ negation and conjunction

• temporal operators
• Xϕ neXt step fulfills ϕ
• Fϕ sometimes in the Future ϕ will hold
• Gϕ ϕ Globally holds
• ϕUψ ϕ holds Until ψ holds

linear temporal logic is a logic for describing linear time properties

RT (ICS @ UIBK) Chapter 3 9/56

LTL - Linear Time Logic Syntax

Derived operators

false ≡ ¬true

ϕ ∨ ψ ≡ ¬ (¬ϕ ∧ ¬ψ)

ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ

ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

ϕ⊕ ψ ≡ ¬(ϕ⇔ ψ)

precedence order: the unary operators bind stronger than the binary ones.
¬ and X bind equally strong. U takes precedence over ∧, ∨ , and ⇒

¬ ,X ,F ,G > U > ∧, ∨ ,⇒,⇔

RT (ICS @ UIBK) Chapter 3 10/56

LTL - Linear Time Logic Semantics

Intuitive semantics

a · · · a

ϕ · · · Xϕ

ϕ · · · Fϕ

ϕ ϕ ϕ ϕ ϕ · · · Gϕ

ϕ ϕ ϕ ψ · · · ϕUψ

RT (ICS @ UIBK) Chapter 3 11/56

LTL - Linear Time Logic Semantics

Properties of a traffic light

• the light is never red and green:

G (

¬ (red ∧ green)

)

• whenever the light is red, it cannot become green immediately
afterwards:

G (

red ⇒ ¬X green

)

• eventually, the light becomes green: F green

• green holds until red appears and at sometime orange appears;
moreover, the red is later than the orange

(green U red) ∧ F (orange ∧ X F red)

most of these requirements do not correspond to the specifications

RT (ICS @ UIBK) Chapter 3 12/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL - Linear Time Logic Semantics

Practical properties in LTL

• Reachability
• reachability Fψ
• conditional reachability ϕUψ
• reachability from any state not expressible

• Safety G¬ϕ
• Liveness G (ϕ ⇒ Fψ) and others

• Fairness G Fϕ and others

RT (ICS @ UIBK) Chapter 3 13/56

LTL - Linear Time Logic Semantics

Semantics over words
the language induced by LTL formula ϕ over AP = {a1, . . . , an} is:

L(ϕ) =
{

w ∈
(

2AP
)ω
| w |= ϕ

}
,where |= is defined as follows:

(let w = A0A1A2 . . . and w [i ..] = AiAi+1Ai+2 . . . is the suffix of w from index i on)

w |= true

w |= ai iff ai ∈ A0

w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |= ¬ϕ iff w 6|= ϕ

w |= Xϕ iff w [1..] = A1A2A3 . . . |= ϕ

w |= ϕ1 Uϕ2 iff ∃j > 0. w [j ..] |= ϕ2 and ∀0 6 i < j : w [i ..] |= ϕ1

w |= Fϕ iff ∃j > 0. w [j ..] |= ϕ

w |= Gϕ iff ∀j > 0. w [j ..] |= ϕ

RT (ICS @ UIBK) Chapter 3 14/56

LTL - Linear Time Logic Semantics

Semantics for Transition Systems

semantics is defined via set inclusion as indicated in previous section, so a
system satisfies a formula iff all traces are allowed w.r.t. the formula:

TS |= ϕ iff Traces(TS) ⊆ L(ϕ)

RT (ICS @ UIBK) Chapter 3 15/56

LTL - Linear Time Logic Semantics

A note on negations

for trace w , it holds w |= ϕ iff w 6|= ¬ϕ since

L(¬ϕ) =
(
2AP)ω \ L(ϕ)

but: TS 6|= ϕ and TS |= ¬ϕ are not equivalent in general
usually it holds: TS |= ¬ϕ implies TS 6|= ϕ but not always the reverse!

example:

• let w1 and w2 be two different traces of TS such that w1 |= ϕ and
w2 6|= ϕ

• due to w2 we know TS 6|= ϕ

• due to w1 we know w1 6|= ¬ϕ and hence TS 6|= ¬ϕ
⇒ TS 6|= ϕ and TS 6|= ¬ϕ

RT (ICS @ UIBK) Chapter 3 16/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL - Linear Time Logic Semantics

Example

RT (ICS @ UIBK) Chapter 3 17/56

LTL - Linear Time Logic Equivalences

Equivalence of LTL formulas, Deriving F and G

LTL formulas ϕ,ψ are equivalent, denoted ϕ ≡ ψ, iff

L(ϕ) = L(ψ)

• Fϕ ≡ true Uϕ

• Gϕ ≡ ¬(F¬ϕ) ≡ ¬(true U¬ϕ)

RT (ICS @ UIBK) Chapter 3 18/56

LTL - Linear Time Logic Equivalences

Often used constructs

• G Fϕ iff ∀i ∃j > i : w [j ..] |= ϕ iff

infinitely often ϕ is satisfied

• F Gϕ iff ∃i ∀j > i : w [j ..] |= ϕ iff

from some point onwards ϕ is satisfied

RT (ICS @ UIBK) Chapter 3 19/56

LTL - Linear Time Logic Equivalences

Duality and idempotence laws

duality: ¬Gϕ ≡ F ¬ϕ

¬Fϕ ≡ G ¬ϕ

¬Xϕ ≡ X ¬ϕ

idempotency: G Gϕ ≡ Gϕ

F Fϕ ≡ Fϕ

ϕU (ϕUψ) ≡ ϕUψ

(ϕUψ) Uψ ≡ ϕUψ

RT (ICS @ UIBK) Chapter 3 20/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL - Linear Time Logic Equivalences

Absorption and distributive laws

absorption: F G Fϕ ≡ G Fϕ

G F Gϕ ≡ F Gϕ

distribution: X (ϕUψ) ≡ XϕU Xψ

F (ϕ ∨ ψ) ≡ Fϕ ∨ Fψ

G (ϕ ∧ ψ) ≡ Gϕ ∧ Gψ

but: F (ϕ ∧ ψ) 6≡ Fϕ ∧ Fψ

G (ϕ ∨ ψ) 6≡ Gϕ ∨ Gψ

RT (ICS @ UIBK) Chapter 3 21/56

LTL - Linear Time Logic Equivalences

Example

RT (ICS @ UIBK) Chapter 3 22/56

LTL - Linear Time Logic Equivalences

Expansion laws

expansion: Fϕ ≡ ϕ ∨ X Fϕ

Gϕ ≡ ϕ ∧ X Gϕ

ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ))

RT (ICS @ UIBK) Chapter 3 23/56

LTL Model Checking

Outline

Specifying Linear Time Properties

LTL - Linear Time Logic
Syntax
Semantics
Equivalences

LTL Model Checking
Overview
Transforming LTL into GNBAs
Complexity of LTL Model Checking

RT (ICS @ UIBK) Chapter 3 24/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Overview

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

this section

RT (ICS @ UIBK) Chapter 3 25/56

LTL Model Checking Overview

The requirements of model checking

essentially we need a mechanism to represent L(ϕ) for LTL formula ϕ

• possible classes: finite, regular, context-free, context-sensitive, . . .

• model checking requires checking Traces(TS) ⊆ L(ϕ)
or equivalently: Traces(TS) ∩ L(¬ϕ) = ∅

⇒ requirements on class of language
• closure under intersection
• emptyness decidable
• expressive enough to represent Traces(TS) and L(ϕ)

• use regular languages, they are closed under all boolean operations

• possible representations of regular languages
• regular expressions
• non-recursive grammars
• finite automata

RT (ICS @ UIBK) Chapter 3 26/56

LTL Model Checking Overview

Are GNBA’s expressive enough to express LTL?

Safety properties: (refutation by a finite prefix of an ω-word)

1. always at most one traffic light is showing green
G¬(green1 ∧ green2)

2. green cannot be directly followed by red
¬F (green ∧ X red)

Liveness properties: (refutation only by whole ω-word)

3. we will see green infinitely often
G F green

4. whenever we select sprite then later on we will get a sprite
G (sel sprite⇒ X F get sprite)

⇒ many interesting properties can be expressed by GNBAs
(and indeed every LTL formula can be translated into equivalent
GNBA)

RT (ICS @ UIBK) Chapter 3 27/56

LTL Model Checking Overview

Properties as GNBAs

RT (ICS @ UIBK) Chapter 3 28/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Overview

Model Checking with GNBAs

transition system TS and LTL formula ϕ given

TS |= ϕ

iff Traces(TS) ⊆ L(ϕ)

iff Traces(TS) \ L(ϕ) = Traces(TS) ∩ L(¬ϕ) = ∅

⇒ LTL model checking can be done in four steps

1. calculate GNBA ATS with Traces(TS) = L(ATS) (Chapter 2)

2. calculate GNBA A¬ϕ with L(¬ϕ) = L(A¬ϕ) (this section)

3. calculate GNBA A for intersection of ATS and A¬ϕ (Chapter 2)

4. perform non-emptyness test for L(A) (Chapter 2)

RT (ICS @ UIBK) Chapter 3 29/56

LTL Model Checking Transforming LTL into GNBAs

Fischer Ladner Closure

let ϕ be an LTL formula over AP = {a1, . . . , an}.

Definition
the Fischer Ladner closure cl(ϕ) is the list of sub-formulas of ϕ (starting
from small formulas and ending with ϕ):

a1, . . . , an, . . . , ϕ

Example

RT (ICS @ UIBK) Chapter 3 30/56

LTL Model Checking Transforming LTL into GNBAs

ϕ-Expansion

idea:

• expand word by new row for each ψ ∈ cl(ϕ) which is not an atomic
proposition

• write truth-values of ψ in i-th column for subword w [i ..]

Definition
for w ∈ (2n)ω and LTL-formula ϕ with cl(ϕ) = ϕ1, . . . , ϕm define the
ϕ-expansion as word v ∈ (2m)ω:

v [i]j = 1 iff w [i ..] |= ϕj

(v [i] is the i-th letter of the infinite word v ,
and v [i]j is the j-th component of the vector v [i])

RT (ICS @ UIBK) Chapter 3 31/56

LTL Model Checking Transforming LTL into GNBAs

Example

ϕ-expansion for ϕ = ¬b ∧ (X a U b)

RT (ICS @ UIBK) Chapter 3 32/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Transforming LTL into GNBAs

Idea of LTL to GNBA Translation

• GNBA guesses the ϕ-expansion of w

• . . . and checks that guesses are correct (mostly done locally!)

• . . . and demands that value for whole formula is 1 for whole word w

Definition (Consistency Checks)

let cl(ϕ) = ϕ1, . . . , ϕm; a sequence of two successive vectors
(b1, . . . , bm)T (c1, . . . , cm)T is consistent w.r.t. cl(ϕ) iff whenever

ϕj = true then bj

ϕj = ¬ϕj1 then bj ⇔ ¬bj1

ϕj = ϕj1 ∧ ϕj2 then bj ⇔ (bj1 ∧ bj2)

ϕj = Xϕj1 then bj ⇔ cj1

ϕj = ϕj1 Uϕj2 then bj ⇔ (bj2 ∨ (bj1 ∧ cj))

(for last check recall expansion law: ϕj1 Uϕj2 ≡ ϕj2 ∨ (ϕj1 ∧X (ϕj1 Uϕj2)))
RT (ICS @ UIBK) Chapter 3 33/56

LTL Model Checking Transforming LTL into GNBAs

Consistency Checks and LTL-Models

Lemma
w |= ϕ iff there exists an expansion v ∈ (2m)ω of w such that

1. v [i] v [i + 1] is consistent for all i

2. v [0]m = 1

3. whenever ϕj = ϕj1 Uϕj2 and v [i]j = 1 then
there exists i ′ > i such that v [i ′]j2 = 1

RT (ICS @ UIBK) Chapter 3 34/56

LTL Model Checking Transforming LTL into GNBAs

Translating LTL to GNBA

Definition (GNBA for an LTL formula ϕ)

let cl(ϕ) = a1, . . . , an, ϕn+1, . . . , ϕm where ϕm = ϕ
define Aϕ = (2m] {q0}, 2n, q0, δ,F1, . . . ,Fk) where

• (c1, . . . , cm)T ∈ δ((b1, . . . , bm)T , (d1, . . . , dn)T) iff

1. cj ⇔ dj for all j 6 n (expansion)
2. (b1, . . . , bm)T (c1, . . . , cm)T is consistent (consistent expansion)

• (c1, . . . , cm)T ∈ δ(q0, (d1, . . . , dn)T) iff

1. cj ⇔ dj for all j 6 n (expansion)
2. cm (ϕ is satisfied)

• if ϕj = ϕj1 Uϕj2 is i-th U -subformula in cl(ϕ) then

Fi = {(b1, . . . , bm)T | ¬bj ∨ bj2}

RT (ICS @ UIBK) Chapter 3 35/56

LTL Model Checking Transforming LTL into GNBAs

Example

RT (ICS @ UIBK) Chapter 3 36/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Transforming LTL into GNBAs

Example (parts of GNBA)

RT (ICS @ UIBK) Chapter 3 37/56

LTL Model Checking Transforming LTL into GNBAs

Soundness of Translation

Theorem
for every LTL formula ϕ

L(ϕ) = L(Aϕ)

Proof of Lemma.
by induction on ϕ using the consistency checks

Proof of Theorem.

• construction of Aϕ directly corresponds to requirements 1 and 2 in
lemma

• remaining difficulty:
show that visiting Fi infinitely often is the same as requirement 3 in
lemma for i-th U -subformula ϕj = ϕj1 Uϕj2

RT (ICS @ UIBK) Chapter 3 38/56

LTL Model Checking Transforming LTL into GNBAs

Optimizing the Translation

• observation: many states do not have outgoing transitions

• reason: several inconsistencies due to Boolean conditions
example: if ϕj = ϕj1 ∧ ϕj2 then bj cannot be freely chosen;
value of bj is determined by bj1 and bj2

• idea: take reduced Fischer-Ladner closure cl ′(ϕ) which only contains
• atomic propositions
• X -formulas
• U -formulas
• . . . and no other formula

and then incorporate the Boolean connectives directly into
consistency, final states, . . .

RT (ICS @ UIBK) Chapter 3 39/56

LTL Model Checking Transforming LTL into GNBAs

Towards an Improved Translation

let cl ′(ϕ) = ϕ1, . . . , ϕm over AP = {a1, . . . , an}

Definition (Unwinding)

the unwinding of a subformula ψ of ϕ w.r.t. a vector B = (b1, . . . , bm) is
defined as UB(ψ) where

UB(ai) = bi for all atomic propositions ai

UB(true) = true

UB(¬ψ) = ¬UB(ψ)

UB(ψ1 ∧ ψ2) = UB(ψ1) ∧ UB(ψ2)

UB(Xψ) = bj where n < j 6 m is the index s.t. ϕj = Xψ

UB(ψUχ) = bj where n < j 6 m is the index s.t. ϕj = ψUχ

RT (ICS @ UIBK) Chapter 3 40/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Transforming LTL into GNBAs

Towards an Improved Translation (2)

Definition (Compressed Consistency Checks)

let cl ′(ϕ) = ϕ1, . . . , ϕm; a sequence of two successive vectors
B = (b1, . . . , bm)T and C = (c1, . . . , cm)T is consistent w.r.t. cl ′(ϕ) iff
whenever

ϕj = Xψ then bj ⇔ UC (ψ)

ϕj = ψUχ then bj ⇔ (UB(χ) ∨ (UB(ψ) ∧ cj))

RT (ICS @ UIBK) Chapter 3 41/56

LTL Model Checking Transforming LTL into GNBAs

Improved Translation

Definition
let cl ′(ϕ) = a1, . . . , an, ϕn+1, . . . , ϕm define
Aϕ = (2m] {q0}, 2n, q0, δ,F1, . . . ,Fk) where

• (c1, . . . , cm)T ∈ δ((b1, . . . , bm)T , (d1, . . . , dn)T) iff

1. cj ⇔ dj for all j 6 n (expansion)
2. (b1, . . . , bm)T (c1, . . . , cm)T is consistent (consistent expansion)

• C = (c1, . . . , cm)T ∈ δ(q0, (d1, . . . , dn)T) iff

1. cj ⇔ dj for all j 6 n (expansion)
2. UC (ϕ) (ϕ is satisfied)

• if ϕj = ψUχ is i-th U -subformula in cl(ϕ) then

Fi = {B = (b1, . . . , bm)T | ¬bj ∨ UB(χ)}

RT (ICS @ UIBK) Chapter 3 42/56

LTL Model Checking Transforming LTL into GNBAs

Example

RT (ICS @ UIBK) Chapter 3 43/56

LTL Model Checking Transforming LTL into GNBAs

Example GNBA

RT (ICS @ UIBK) Chapter 3 44/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Transforming LTL into GNBAs

Soundness of the Improved Transformation

Theorem
both transformations yield essentially the same automata; the only
difference is that

• whenever ϕi = ϕi1 ∧ ϕi2 then the i-th component is missing in the
improved transformation; the state without the i-th component of the
improved transformation is corresponding to the state
(. . . , bi1 , . . . , bi2 , . . . , bi , . . .) where bi = bi1 ∧ bi2 ;
moreover, all other states in the non-improved translation where
bi 6= bi1 ∧ bi2 have no outgoing states

• a similar property is true for negations

⇒ soundness of the non-improved translation implies soundness of the
improved one

RT (ICS @ UIBK) Chapter 3 45/56

LTL Model Checking Complexity of LTL Model Checking

Complexity of LTL Model Checking
LTL model Checking: given TS and ϕ check

L(A3) = ∅

where

A1 = ATS

A2 = A¬ϕ

A3 = AA1∩A2

number of states:

A1 : |TS|+ 1

A2 : 2|AP|+|ϕ| + 1 where |ϕ| is number of temporal operators in ϕ

A3 : (|TS|+ 1) · (2|AP|+|ϕ| + 1)

⇒ total complexity of O(|TS| · 2|AP|+|ϕ|)
RT (ICS @ UIBK) Chapter 3 46/56

LTL Model Checking Complexity of LTL Model Checking

Lower bound

Theorem
there exists a family of LTL formulas ϕn over AP = {a} with
|ϕn| = O(poly(n)) such that every NBA An with L(An) = L(ϕn) has at
least 2n states

RT (ICS @ UIBK) Chapter 3 47/56

LTL Model Checking Complexity of LTL Model Checking

Proof (1)

RT (ICS @ UIBK) Chapter 3 48/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Complexity of LTL Model Checking

Proof (2)

RT (ICS @ UIBK) Chapter 3 49/56

LTL Model Checking Complexity of LTL Model Checking

Is Bad Complexity a Result of Automata Approach? No!

Theorem
the inverted LTL model checking problem

TS 6|= ϕ

is NP-hard

Corollary

the LTL model checking problem TS |= ϕ is coNP-hard

⇒ assuming P 6= NP, LTL model checking cannot be done in polynomial
time

RT (ICS @ UIBK) Chapter 3 50/56

LTL Model Checking Complexity of LTL Model Checking

Proving NP-hardness

to prove NP-hardness of problem p one can use a reduction:

1. find another problem q which is known to be NP-hard

2. reduce q to p in polynomial time, i.e.,
find a mapping µ : q → p such that

• q has a positive answer iff µ(q) has a positive answer
• µ can be computed in polynomial time

RT (ICS @ UIBK) Chapter 3 51/56

LTL Model Checking Complexity of LTL Model Checking

NP-Hardness of “TS 6|= ϕ”

RT (ICS @ UIBK) Chapter 3 52/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Complexity of LTL Model Checking

Example

RT (ICS @ UIBK) Chapter 3 53/56

LTL Model Checking Complexity of LTL Model Checking

Complexity is Even Worse . . .

Theorem (Sistla, Clarke)

the LTL model checking problem TS |= ϕ is PSPACE-hard

RT (ICS @ UIBK) Chapter 3 54/56

LTL Model Checking Complexity of LTL Model Checking

. . . But There is a Limit

Theorem
the LTL model checking problem TS |= ϕ is PSPACE-complete

RT (ICS @ UIBK) Chapter 3 55/56

Summary

Summary

• LTL is a logic for specifying the allowed traces of a system; it extends
propositional logic by temporal operators like X and U

• LTL model checking can be done by constructing a GNBA and then
checking whether this GNBA accepts at least one word, the
counterexample

• LTL model checking is PSPACE-complete

RT (ICS @ UIBK) Chapter 3 56/56

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Specifying Linear Time Properties
	LTL - Linear Time Logic
	Syntax
	Semantics
	Equivalences

	LTL Model Checking
	Overview
	Transforming LTL into GNBAs
	Complexity of LTL Model Checking

	Summary

