

Introduction to Model Checking

René Thiemann

Institute of Computer Science University of Innsbruck

WS 2009/2010

(ICS © UIBK) Chapter 3 1/56 cifying Linear Time Properties

• Specifying Linear Time Properties

• LTL - Linear Time Logic

- Syntax
- Semantics
- Equivalences

• LTL Model Checking

- Overview
- Transforming LTL into GNBAs
- Complexity of LTL Model Checking

Outline

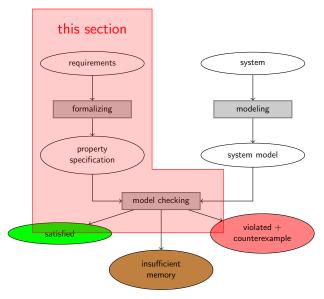
- Specifying Linear Time Properties
- LTL Linear Time Logic
 - Syntax
 - Semantics
 - Equivalences
- LTL Model Checking
 - Overview
 - Transforming LTL into GNBAs
 - Complexity of LTL Model Checking

RT (ICS @ UIBK) Chapter 3

Chapter 3

Specifying Linear Time Properties

Model checking overview



Requirements \neq Specification

requirements

- high-level description (consider scheduler for exclusive access)
 - (the scheduler should be correct)
 - no two clients get access at the same time
 - the scheduler should be fair
 - there is no deadlock
- what we observe from system: $Traces(TS) \subseteq (2^{AP})^{\omega}$
- \Rightarrow how to answer question "does system satisfy requirements"? problem: to imprecise
- \Rightarrow we need requirements in a precise, i.e., mathematical specification

Linear Time Properties

one main idea to specify requirements: describe allowed traces

- specification is set $S \subseteq (2^{AP})^{\omega}$ (linear time property)
- system TS satisfies S iff every trace of TS is allowed w.r.t. S:

Chapter 3

Traces(*TS*) $\subseteq S$

- model checking of linear time properties: given *Traces*(*TS*) and *S*, answer *Traces*(*TS*) ⊆ *S*
- $\Rightarrow\,$ precise formulation, no ambiguity
- upcoming problems
 - how to specify sets $\mathcal S$ conveniently ...
 - ... such that $Traces(TS) \subseteq S$ can be decided

RT (ICS @ UIBK)	Chapter 3	5/56
LTL - Linear Time Logic		
Outline		
• Specifying Linear Tim	ne Properties	
• LTL - Linear Time Lo	ogic	

- Syntax
- Semantics
- Equivalences

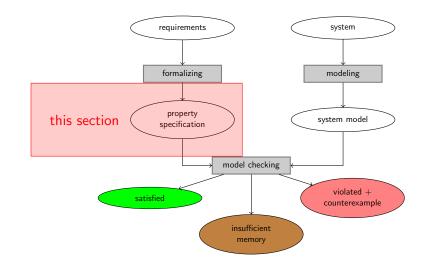
• LTL Model Checking

- Overview
- Transforming LTL into GNBAs
- Complexity of LTL Model Checking

LTL - Linear Time Logic

RT (ICS @ UIBK)

Model checking overview



6/56

LTL - Linear Time Logic

yntax

atomic proposition

negation and conjunction

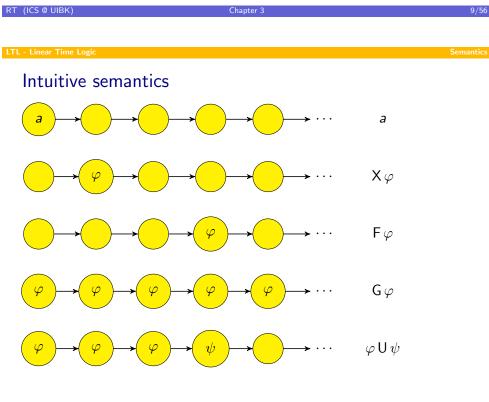
Syntax of Linear Temporal Logic

modal logic over infinite sequences [Pnueli 1977]

- propositional logic
 - true
 - a, paid, sprite, $\ldots \in AP$
 - $\neg \varphi$ and $\varphi \wedge \psi$
- temporal operators

neXt step fulfills φ
sometimes in the Future $arphi$ will hold
arphi Globally holds
$arphi$ holds ${f U}$ ntil $ar\psi$ holds

linear temporal logic is a logic for describing linear time properties



Derived operators

 $\begin{array}{lll} \mathsf{false} &\equiv \neg \mathsf{true} \\ \varphi \lor \psi &\equiv \neg (\neg \varphi \land \neg \psi) \\ \varphi \Rightarrow \psi &\equiv \neg \varphi \lor \psi \\ \varphi \Leftrightarrow \psi &\equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi) \\ \varphi \oplus \psi &\equiv \neg (\varphi \Leftrightarrow \psi) \end{array}$

precedence order: the unary operators bind stronger than the binary ones. \neg and X bind equally strong. U takes precedence over \land , \lor , and \Rightarrow

 $\neg\,,\mathsf{X}\,,\mathsf{F}\,,\mathsf{G} \quad > \quad \mathsf{U} \quad > \quad \land, \ \lor \ ,\Rightarrow,\Leftrightarrow$

RT (ICS @ UIBK)	Chapter 3	10/56
LTL - Linear Time Logic		Semantics
Properties of a tr	raffic light	
	unic iight	

- the light is never red and green: \neg (red \land green)
- whenever the light is red, it cannot become green immediately afterwards:

 $\mathsf{red} \; \Rightarrow \; \neg \, X \, \mathsf{green}$

- eventually, the light becomes green: F green
- green holds until red appears and at sometime orange appears; moreover, the red is later than the orange

 $(green U red) \land F (orange \land X F red)$

most of these requirements do not correspond to the specifications

Chapter 3

Semantics over words

the language induced by LTL formula φ over $AP = \{a_1, \ldots, a_n\}$ is:

$$\mathcal{L}(\varphi) = \left\{ w \in \left(2^{AP}\right)^{\omega} \mid w \models \varphi \right\}$$
, where \models is defined as follows:

(let $w = A_0A_1A_2...$ and $w[i..] = A_iA_{i+1}A_{i+2}...$ is the suffix of w from index i on)

 $w \models \text{true}$ $w \models a_i \quad \text{iff} \quad a_i \in A_0$ $w \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad w \models \varphi_1 \text{ and } w \models \varphi_2$ $w \models \neg \varphi \quad \text{iff} \quad w \not\models \varphi$ $w \models X\varphi \quad \text{iff} \quad w[1..] = A_1A_2A_3... \models \varphi$ $w \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \ge 0. w[j..] \models \varphi_2 \text{ and } \forall 0 \le i < j : w[i..] \models \varphi_1$ $w \models F\varphi \quad \text{iff} \quad \exists j \ge 0. w[j..] \models \varphi$ $w \models G\varphi \quad \text{iff} \quad \forall j \ge 0. w[j..] \models \varphi$

TL - Linear Time Logic

A note on negations

for trace w, it holds $w \models \varphi$ iff $w \not\models \neg \varphi$ since

$$\mathcal{L}(\neg \varphi) = (2^{AP})^{\omega} \setminus \mathcal{L}(\varphi)$$

but: $TS \not\models \varphi$ and $TS \models \neg \varphi$ are not equivalent in general usually it holds: $TS \models \neg \varphi$ implies $TS \not\models \varphi$ but not always the reverse!

example:

- let w_1 and w_2 be two different traces of *TS* such that $w_1 \models \varphi$ and $w_2 \not\models \varphi$
- due to w_2 we know $TS \not\models \varphi$
- due to w_1 we know $w_1 \not\models \neg \varphi$ and hence $TS \not\models \neg \varphi$
- $\Rightarrow TS \not\models \varphi \text{ and } TS \not\models \neg \varphi$

• Reachability • reachability • conditional reachability • reachability from any state • Safety • Liveness • Fairness • Reachability • reachability • reachability from any state • Safety • Liveness • Fairness • G φ and others

RT (ICS @ UIBK)	Chapter 3	13/56
.TL - Linear Time Logic		Semantics

Semantics for Transition Systems

semantics is defined via set inclusion as indicated in previous section, so a system satisfies a formula iff all traces are allowed w.r.t. the formula:

$TS \models \varphi \text{ iff } Traces(TS) \subseteq \mathcal{L}(\varphi)$

LTL - Linear Time Logic

Semantics

Example

L - Linear Time Logic

Equivalence of LTL formulas, Deriving F and G

LTL formulas φ, ψ are equivalent, denoted $\varphi \equiv \psi$, iff

 $\mathcal{L}(\varphi) = \mathcal{L}(\psi)$

• $F \varphi \equiv true U \varphi$

•
$$G \varphi \equiv \neg (F \neg \varphi) \equiv \neg (true U \neg \varphi)$$

CS @ UIBK)	Chapter 3	18/5
		Equivalence
Linear Time Logic		

RT (ICS @ UIBK) Chapter 3 17/56 LTL - Linear Time Logic Equivalences Often used constructs Image: Second sec

• **F G** φ iff $\exists i \ \forall j \ge i : w[j..] \models \varphi$ iff

from some point onwards φ is satisfied

Duality and idempotence laws

dual

ity:	$\neg G \varphi$	≡	$F\neg\varphi$
	$\negF\varphi$	≡	$G\neg\varphi$
	$\neg X \varphi$	≡	$X\neg\varphi$

 $\begin{array}{rcl} \mbox{idempotency:} & {\sf G}\,{\sf G}\,\varphi & \equiv & {\sf G}\,\varphi \\ & {\sf F}\,{\sf F}\,\varphi & \equiv & {\sf F}\,\varphi \\ & \varphi\,{\sf U}\,(\varphi\,{\sf U}\,\psi) & \equiv & \varphi\,{\sf U}\,\psi \\ & & (\varphi\,{\sf U}\,\psi)\,{\sf U}\,\psi & \equiv & \varphi\,{\sf U}\,\psi \end{array}$

absorption:	FGFarphi $GFGarphi$		
distribution:	$F(\varphi \lor \psi)$	≡	
but:	$F\left(arphi\wedge\psi ight)$ $G\left(arphiee\psi ight)$		$F arphi \wedge F \psi$ $G arphi \lor G \psi$

RT (ICS @ UIBK)	Chapter 3	21/56
LTL - Linear Time Logic		Equivalences
Expansion laws		

expansion:
$$F \varphi \equiv \varphi \lor X F \varphi$$

 $G \varphi \equiv \varphi \land X G \varphi$
 $\varphi \cup \psi \equiv \psi \lor (\varphi \land X(\varphi \cup \psi))$

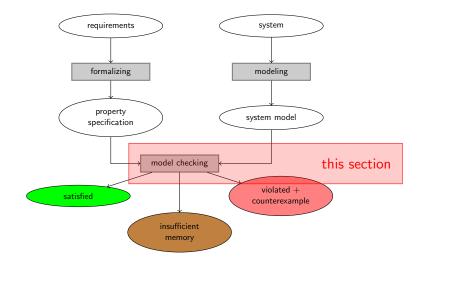
Example

RT (ICS @ UIBK) Chapter 3 22/56 LTL Model Checking Outline • Specifying Linear Time Properties

- LTL Linear Time Logic
 - Syntax
 - Semantics
 - Equivalences
- LTL Model Checking
 - Overview
 - Transforming LTL into GNBAs
 - Complexity of LTL Model Checking

erview

Model checking overview



RT (ICS @ UIBK)	Chapter 3	25/56

LTL Model Checking

verview

Are GNBA's expressive enough to express LTL?

Safety properties: (refutation by a finite prefix of an ω -word)

- 1. always at most one traffic light is showing green $G\,\neg({\sf green}_1 \wedge {\sf green}_2)$
- 2. green cannot be directly followed by red $\neg F(\text{green} \land X \text{ red})$

Liveness properties: (refutation only by whole ω -word)

- 3. we will see green infinitely often G F green
- 4. whenever we select sprite then later on we will get a sprite $G \, (sel_sprite \Rightarrow X \, F \, get_sprite)$
- \Rightarrow many interesting properties can be expressed by GNBAs (and indeed every LTL formula can be translated into equivalent GNBA)

The requirements of model checking

essentially we need a mechanism to represent $\mathcal{L}(\varphi)$ for LTL formula φ

- possible classes: finite, regular, context-free, context-sensitive, ...
- model checking requires checking *Traces*(*TS*) ⊆ *L*(φ) or equivalently: *Traces*(*TS*) ∩ *L*(¬φ) = Ø
- \Rightarrow requirements on class of language
 - closure under intersection
 - emptyness decidable
 - expressive enough to represent Traces(TS) and $\mathcal{L}(\varphi)$
- use regular languages, they are closed under all boolean operations
- possible representations of regular languages
 - regular expressions
 - non-recursive grammars
 - finite automata

RT (ICS @ UIBK)	Chapter 3	26/56
LTL Model Checking		Overview

Properties as GNBAs

Overvie

verview

(Chapter 2)

Model Checking with GNBAs

transition system TS and LTL formula φ given

 $TS \models \varphi$ iff $Traces(TS) \subseteq \mathcal{L}(\varphi)$ iff $Traces(TS) \setminus \mathcal{L}(\varphi) = Traces(TS) \cap \mathcal{L}(\neg \varphi) = \emptyset$

 \Rightarrow LTL model checking can be done in four steps

1. calculate GNBA \mathcal{A}_{TS} with 7	$\mathit{Traces}(\mathit{TS}) = \mathcal{L}(\mathcal{A}_{\mathit{TS}})$	(Chapter 2)
---	---	-------------

- 2. calculate GNBA $\mathcal{A}_{\neg\varphi}$ with $\mathcal{L}(\neg\varphi) = \mathcal{L}(\mathcal{A}_{\neg\varphi})$ (this section)
- 3. calculate GNBA \mathcal{A} for intersection of \mathcal{A}_{TS} and $\mathcal{A}_{\neg\varphi}$ (Chapter 2)
- 4. perform non-emptyness test for $\mathcal{L}(\mathcal{A})$

RT (ICS @ UIBK)	Chapter 3	29/56
LTL Model Checking		Transforming LTL into GNBAs

φ -Expansion

idea:

- expand word by new row for each $\psi \in cl(\varphi)$ which is not an atomic proposition
- write truth-values of ψ in *i*-th column for subword w[i..]

Definition

for $w \in (2^n)^{\omega}$ and LTL-formula φ with $cl(\varphi) = \varphi_1, \ldots, \varphi_m$ define the φ -expansion as word $v \in (2^m)^{\omega}$:

 $v[i]^j = 1$ iff $w[i..] \models \varphi_j$

(v[i] is the i-th letter of the infinite word v,and $v[i]^j$ is the *j*-th component of the vector v[i])

Fischer Ladner Closure

let φ be an LTL formula over $AP = \{a_1, \ldots, a_n\}$.

Definition

the Fischer Ladner closure $cl(\varphi)$ is the list of sub-formulas of φ (starting from small formulas and ending with φ):

 $a_1,\ldots,a_n,\ldots,\varphi$

Example

RT (ICS @ UIBK)	Chapter 3	30/56
LTL Model Checking Example		Transforming LTL into GNBAs

 φ -expansion for $\varphi = \neg b \land (X a \cup b)$

Transforming LTL into GNBAs

Idea of LTL to GNBA Translation

- GNBA guesses the φ -expansion of w
- ... and checks that guesses are correct (mostly done locally!)
- ... and demands that value for whole formula is 1 for whole word w

Definition (Consistency Checks)

let $cl(\varphi) = \varphi_1, \ldots, \varphi_m$; a sequence of two successive vectors $(b_1, \ldots, b_m)^T (c_1, \ldots, c_m)^T$ is consistent w.r.t. $cl(\varphi)$ iff whenever

$arphi_j = true$	then <i>b_j</i>
$\varphi_j = \neg \varphi_{j_1}$	then $b_j \Leftrightarrow \neg b_{j_1}$
$\varphi_j = \varphi_{j_1} \wedge \varphi_{j_2}$	then $b_j \Leftrightarrow (b_{j_1} \wedge b_{j_2})$
$\varphi_j = X \varphi_{j_1}$	then $b_j \Leftrightarrow c_{j_1}$
$\varphi_j = \varphi_{j_1} U \varphi_{j_2}$	then $b_j \Leftrightarrow (b_{j_2} \lor (b_{j_1} \land c_j))$

(for last check recall expansion law:
$$\varphi_{j_1} \cup \varphi_{j_2} \equiv \varphi_{j_2} \lor (\varphi_{j_1} \wedge X(\varphi_{j_1} \cup \varphi_{j_2})))$$

AT (ICS @ UIBK) Chapter 3 33/56

LTL Model Checking

nsforming LTL into GNB

Translating LTL to GNBA

Definition (GNBA for an LTL formula φ) let $cl(\varphi) = a_1, \dots, a_n, \varphi_{n+1}, \dots, \varphi_m$ where $\varphi_m = \varphi$ define $\mathcal{A}_{\varphi} = (2^m \uplus \{q_0\}, 2^n, q_0, \delta, F_1, \dots, F_k)$ where • $(c_1, \dots, c_m)^T \in \delta((b_1, \dots, b_m)^T, (d_1, \dots, d_n)^T)$ iff 1. $c_j \Leftrightarrow d_j$ for all $j \leqslant n$ (expansion) 2. $(b_1, \dots, b_m)^T (c_1, \dots, c_m)^T$ is consistent (consistent expansion) • $(c_1, \dots, c_m)^T \in \delta(q_0, (d_1, \dots, d_n)^T)$ iff 1. $c_j \Leftrightarrow d_j$ for all $j \leqslant n$ (expansion) 2. c_m (φ is satisfied)

• if $\varphi_j = \varphi_{j_1} \cup \varphi_{j_2}$ is *i*-th U-subformula in $cl(\varphi)$ then

$$F_i = \{(b_1, \ldots, b_m)^T \mid \neg b_j \lor b_{j_2}\}$$

TL Model Checking

Consistency Checks and LTL-Models

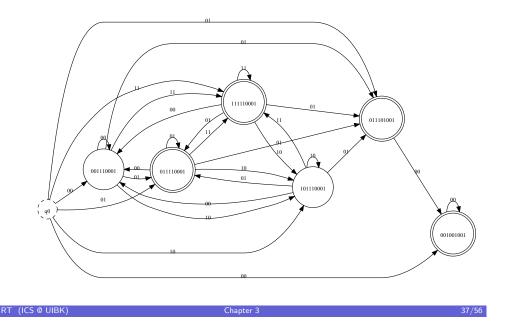
Lemma

- $w \models \varphi$ iff there exists an expansion $v \in (2^m)^\omega$ of w such that
- 1. v[i] v[i+1] is consistent for all i
- 2. $v[0]^m = 1$
- 3. whenever $\varphi_j = \varphi_{j_1} \cup \varphi_{j_2}$ and $v[i]^j = 1$ then there exists $i' \ge i$ such that $v[i']^{j_2} = 1$

RT (ICS @ UIBK)	Chapter 3	34/56
LTL Model Checking		Transforming LTL into GNBAs
Example		

Transforming LTL into GNBAs

Example (parts of GNBA)



LTL Model Checking

ransforming LTL into GNB

Optimizing the Translation

- observation: many states do not have outgoing transitions
- reason: several inconsistencies due to Boolean conditions example: if φ_j = φ_{j1} ∧ φ_{j2} then b_j cannot be freely chosen; value of b_j is determined by b_{j1} and b_{j2}
- idea: take reduced Fischer-Ladner closure $cl'(\varphi)$ which only contains
 - atomic propositions
 - X -formulas
 - U -formulas
 - $\bullet \ \ldots$ and no other formula

and then incorporate the Boolean connectives directly into consistency, final states, \ldots

Soundness of Translation

Theorem for every LTL formula φ

 $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$

Proof of Lemma.

by induction on φ using the consistency checks

Proof of Theorem.

- construction of \mathcal{A}_{φ} directly corresponds to requirements 1 and 2 in lemma
- remaining difficulty:

show that visiting F_i infinitely often is the same as requirement 3 in lemma for *i*-th U-subformula $\varphi_j = \varphi_{j_1} \cup \varphi_{j_2}$

Chapter 3

```
RT (ICS @ UIBK)
```

LTL Model Checking

ransforming LTL into GNBAs

Towards an Improved Translation

et
$$cl'(arphi)=arphi_1,\ldots,arphi_m$$
 over $AP=\{a_1,\ldots,a_n\}$

Definition (Unwinding)

the unwinding of a subformula ψ of φ w.r.t. a vector $B = (b_1, \ldots, b_m)$ is defined as $\mathcal{U}_B(\psi)$ where

$$\begin{split} \mathcal{U}_B(a_i) &= b_i \text{ for all atomic propositions } a_i \\ \mathcal{U}_B(\text{true}) &= \text{true} \\ \mathcal{U}_B(\neg \psi) &= \neg \mathcal{U}_B(\psi) \\ \mathcal{U}_B(\psi_1 \wedge \psi_2) &= \mathcal{U}_B(\psi_1) \wedge \mathcal{U}_B(\psi_2) \\ \mathcal{U}_B(X \psi) &= b_j \text{ where } n < j \leqslant m \text{ is the index s.t. } \varphi_j = X \psi \\ \mathcal{U}_B(\psi \cup \chi) &= b_j \text{ where } n < j \leqslant m \text{ is the index s.t. } \varphi_j = \psi \cup \chi \end{split}$$

Chapter 3

Towards an Improved Translation (2)

Definition (Compressed Consistency Checks)

let $cl'(\varphi) = \varphi_1, \ldots, \varphi_m$; a sequence of two successive vectors $B = (b_1, \ldots, b_m)^T$ and $C = (c_1, \ldots, c_m)^T$ is consistent w.r.t. $cl'(\varphi)$ iff whenever

$$\begin{split} \varphi_j &= \mathsf{X}\,\psi \qquad \text{then } b_j \Leftrightarrow \mathcal{U}_{\mathcal{C}}(\psi) \\ \varphi_j &= \psi \,\mathsf{U}\,\chi \quad \text{then } b_j \Leftrightarrow (\mathcal{U}_{\mathcal{B}}(\chi) \lor (\mathcal{U}_{\mathcal{B}}(\psi) \land c_j) \end{split}$$

Definition

let
$$cl'(\varphi) = a_1, \ldots, a_n, \varphi_{n+1}, \ldots, \varphi_m$$
 define
 $\mathcal{A}_{\varphi} = (2^m \uplus \{q_0\}, 2^n, q_0, \delta, F_1, \ldots, F_k)$ where
• $(c_1, \ldots, c_m)^T \in \delta((b_1, \ldots, b_m)^T, (d_1, \ldots, d_n)^T)$ iff
1. $c_j \Leftrightarrow d_j$ for all $j \leqslant n$ (expansion)
2. $(b_1, \ldots, b_m)^T (c_1, \ldots, c_m)^T$ is consistent (consistent expansion)
• $C = (c_1, \ldots, c_m)^T \in \delta(q_0, (d_1, \ldots, d_n)^T)$ iff
1. $c_j \Leftrightarrow d_j$ for all $j \leqslant n$ (expansion)
2. $\mathcal{U}_C(\varphi)$ (φ is satisfied)

• if $\varphi_j = \psi \cup \chi$ is *i*-th U-subformula in $cl(\varphi)$ then

$$F_i = \{B = (b_1, \ldots, b_m)^T \mid \neg b_j \lor \mathcal{U}_B(\chi)\}$$

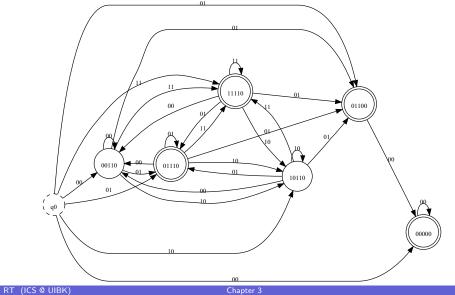
Chapter 3

RT (ICS @ UIBK)	Chapter 3	41/56
LTL Model Checking		Transforming LTL into GNBAs
Example		

RT (ICS @ UIBK)

42/56

Example GNBA



Complexity of LTL Model Checking

LTL model Checking: given TS and φ check

 $\mathcal{L}(\mathcal{A}_3) = \emptyset$

where

$$egin{aligned} \mathcal{A}_1 &= \mathcal{A}_{TS} \ \mathcal{A}_2 &= \mathcal{A}_{\neg arphi} \ \mathcal{A}_3 &= \mathcal{A}_{\mathcal{A}_1 \cap \mathcal{A}_2} \end{aligned}$$

number of states:

 $\begin{array}{l} \mathcal{A}_1 : |TS| + 1 \\ \mathcal{A}_2 : 2^{|\mathcal{A}P| + |\varphi|} + 1 & \text{where } |\varphi| \text{ is number of temporal operators in } \varphi \\ \mathcal{A}_3 : (|TS| + 1) \cdot (2^{|\mathcal{A}P| + |\varphi|} + 1) \end{array}$

Chapter 3

 \Rightarrow total complexity of $\mathcal{O}(|TS| \cdot 2^{|AP|+|\varphi|})$

LTL Model Checking

RT (ICS @ UIBK)

Proof (1)

Soundness of the Improved Transformation

Theorem

both transformations yield essentially the same automata; the only difference is that

- whenever φ_i = φ_{i1} ∧ φ_{i2} then the *i*-th component is missing in the improved transformation; the state without the *i*-th component of the improved transformation is corresponding to the state
 (..., b_{i1},..., b_{i2},..., b_i,...) where b_i = b_{i1} ∧ b_{i2};
 moreover, all other states in the non-improved translation where
 b_i ≠ b_{i1} ∧ b_{i2} have no outgoing states
- a similar property is true for negations
- \Rightarrow soundness of the non-improved translation implies soundness of the improved one

RT (ICS @ UIBK)	Chapter 3	45/56
LTL Model Checking		Complexity of LTL Model Checking
Lower bound		

Theorem

there exists a family of LTL formulas φ_n over $AP = \{a\}$ with $|\varphi_n| = \mathcal{O}(poly(n))$ such that every NBA \mathcal{A}_n with $\mathcal{L}(\mathcal{A}_n) = \mathcal{L}(\varphi_n)$ has at least 2^n states

46/5

Proof (2)

Is Bad Complexity a Result of Automata Approach? No!

Theorem

the inverted LTL model checking problem

$TS \not\models \varphi$

is NP-hard

Corollary the LTL model checking problem $TS \models \varphi$ is coNP-hard

 \Rightarrow assuming $P \neq NP$, LTL model checking cannot be done in polynomial time

RT (ICS @ UIBK) Chapter 3	50/50
LTL Model Checking	Complexity of LTL Model Checking

to prove NP-hardness of problem *p* one can use a reduction:

- 1. find another problem q which is known to be NP-hard
- 2. reduce q to p in polynomial time, i.e., find a mapping $\mu : q \rightarrow p$ such that

Proving NP-hardness

- q has a positive answer iff $\mu(q)$ has a positive answer
- μ can be computed in polynomial time

Example

Complexity of LTL Model Chec

Complexity is Even Worse

Theorem (Sistla, Clarke) the LTL model checking problem $TS \models \varphi$ is PSPACE-hard

Theorem

the LTL model checking problem $TS \models \varphi$ is PSPACE-complete

RT (ICS @ UIBK)	Chapter 3	54/56
Summary		
Summary		

- LTL is a logic for specifying the allowed traces of a system; it extends propositional logic by temporal operators like X and U
- LTL model checking can be done by constructing a GNBA and then checking whether this GNBA accepts at least one word, the counterexample
- LTL model checking is PSPACE-complete