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Model checking overview
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Requirements # Specification Linear Time Properties

. ¢ one main idea to specify requirements: describe allowed traces
requirements
. o . . e specification is set S C (24P)« (linear time propert
e high-level description (consider scheduler for exclusive access) P = (275) (i ' .p perty)
e (the scheduler should be correct) e system TS satisfies S iff every trace of TS is allowed w.r.t. S:
e no two clients get access at the same time Traces(TS) C S
o the scheduler should be fair . . . .
e model checking of linear time properties:
e there is no deadlock & Prop

given Traces(TS) and S, answer Traces(TS) C S

o what we observe from system: Traces(TS) C (24F)~ : . o
= precise formulation, no ambiguity

= how to answer question “does system satisfy requirements”?

problem: to imprecise e upcoming problems

= we need requirements in a precise, i.e., mathematical specification e how to specify sets S conveniently . ..
e ...such that Traces(TS) C S can be decided

RT (ICS @ UIBK) Chapter 3 5/56 RT (ICS @ UIBK) Chapter 3 6/56

Outline Model checking overview

. . . formalizing modeling
@ LTL - Linear Time Logic | |

e Syntax

e Semantics
e Equivalences

property
specification

this section

model checking
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Syntax of Linear Temporal Logic Derived operators

. e ) false = -—true
modal logic over infinite sequences [Pnueli 1977]
p Vi = =(opA9)
e propositional logic p =Y = "oV
. true pe = (p=Y)A W= 9)
e a, paid,sprite,... € AP -atomlc pro.p05|t!on 0B = (p )
e —pand p AY negation and conjunction
e temporal operators
o Xy neXt step fulfills ¢ ) )
e Fo sometimes in the Future ¢ will hold precedence order: the unary operators bind stronger than the binary ones.
e Gy ¢ Globally holds = and X bind equally strong. U takes precedence over A, V , and =
e pUY o holds Until ¥ holds

- X,F.G > U > A,V , =&

linear temporal logic is a logic for describing linear time properties

RT (ICS @ UIBK) Chapter 3 9/56 RT (ICS @ UIBK) Chapter 3 10/56

Intuitive semantics Properties of a traffic light

O

e the light is never red and green: = (red A green)

e whenever the light is red, it cannot become green immediately
X afterwards:

® O

red = —Xgreen

ONON

O ® 0 O O

e eventually, the light becomes green: F green

e green holds until red appears and at sometime orange appears;
moreover, the red is later than the orange

® O 0 ©

(green Ured) A F (orange A X F red)

® O
® ® O O

pUY most of these requirements do not correspond to the specifications

COEER) Chapter 3 11/56 OEIER) Chapter 3 12/56
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Practical properties in LTL

Reachability

e reachability
e conditional reachability
e reachability from any state

Safety

e Liveness

e Fairness

RT (ICS @ UIBK) Chapter 3

Semantics for Transition Systems

Fa

pUy
not expressible

G-y
G(¢ = F1) and others
GF ¢ and others

13/56

semantics is defined via set inclusion as indicated in previous section, so a
system satisfies a formula iff all traces are allowed w.r.t. the formula:

TS = o iff Traces(TS) C L(p)

RT (ICS @ UIBK) Chapter 3

15/56

Semantics over words
the language induced by LTL formula ¢ over AP = {ay,...,ap} is:

w
L(p) = {W € (2AP) | w = cp},where = is defined as follows:

(let w = AgA1 Az ... and w[i..] = AiAi11Ais2 ... is the suffix of w from index i on)

E  true
w o= a iff
w o E p1 A iff
w o E - iff
w | X iff
w E p1Ugy iff
w = Fo iff
w = Gy iff

RT (ICS @ UIBK)

a; € Ao
w = @1 and w = ¢

w s o
W[].] = A1A2A3 e ’: 2

=0 wj.]Ew andVO<i<j:wli.]E ¢

>0 wlj]Ee
Vjiz0.wlj.] e
Chapter 3 14/56

A note on negations

for trace w, it holds w = ¢ iff w [~ = since

L(=¢) = (22P)“\ L(p)

but: TS}~ ¢ and TS |= —¢ are not equivalent in general
usually it holds: TS |= = implies TS [~ ¢ but not always the reverse!

example:

e let wy and w; be two different traces of TS such that wy = ¢ and

wa [= @

e due to wy we know TS}~ ¢

e due to wy we know wy [~ — ¢ and hence TS £~ —¢
= TSFE@and TS -

RT (ICS @ UIBK)

Chapter 3 16/56
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Example

RT (ICS @ UIBK) Chapter 3 17/56

Often used constructs

o GFpiffVidj =i:w[.] [ ¢iff
infinitely often ¢ is satisfied

e FGoiffAiVj=i:wl.]E ¢iff
from some point onwards ¢ is satisfied

COEER) Chapter 3 19/56

Equivalence of LTL formulas, Deriving F and G

LTL formulas ¢, are equivalent, denoted ¢ = 1, iff

e Fo=trueUop

o Gp=—(F-p)=—(trueU—yp)

RT (ICS @ UIBK) Chapter 3

Duality and idempotence laws

duality: -Gy
—|F(p

idempotency: GGy
FFe

eU(pUv)

(pUy)UY

COEER) Chapter 3

F-op
G-y
X =

Fo
Uy
Uy
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LTL - Linear Time Logic Equivalences LTL - Linear Time Logic Equivalences

Absorption and distributive laws Example
absorption: FGFp = GFyp
GFGy = FGy
distribution:  X(pUvy) = XepUXy
Flevy) = FeoVFy

GlpAy) = GpAGY

but: Fleny) # FeAFy
Glpvy) # GepVGYy
RT (ICS O UIBK) Chapter 3 22/56
Expansion laws Outline
expansion: Fo = ¢V XFop
Gy = pAXGyp
eUy = ¢V (pAX(eUy))

@ LTL Model Checking
o Overview
e Transforming LTL into GNBAs
o Complexity of LTL Model Checking

RT (ICS @ UIBK) Chapter 3 23/56 RT (ICS @ UIBK) Chapter 3 24/56
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Model checking overview The requirements of model checking

@ @ essentially we need a mechanism to represent £(¢) for LTL formula ¢

e possible classes: finite, regular, context-free, context-sensitive, . ..

formalizing

modeling e model checking requires checking Traces(TS) C L(p)
or equivalently: Traces(TS)N L(—p) =@
= requirements on class of language
system model . .
C:) e closure under intersection
e emptyness decidable
e expressive enough to represent Traces(TS) and L(p)

property
specification

this section

! model checking

S

e use regular languages, they are closed under all boolean operations
e possible representations of regular languages

e regular expressions
e non-recursive grammars
o finite automata

RT (ICS @ UIBK) Chapter 3 25/56 RT (ICS @ UIBK) Chapter 3 26/56

Are GNBA's expressive enough to express LTL? Properties as GNBAs

Safety properties: (refutation by a finite prefix of an w-word)

1. always at most one traffic light is showing green
G —(green; A greeny)

2. green cannot be directly followed by red
—F (green A Xred)

Liveness properties: (refutation only by whole w-word)

3. we will see green infinitely often
GF green

4. whenever we select sprite then later on we will get a sprite
G (sel_sprite = X F get_sprite)

=- many interesting properties can be expressed by GNBAs
(and indeed every LTL formula can be translated into equivalent
GNBA)

OEER) Chapter 3 27/56 RT (ICS @ UIBK) Chapter 3 28/56
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Model Checking with GNBAs Fischer Ladner Closure

transition system TS and LTL formula ¢ given
let ¢ be an LTL formula over AP = {as,...,an}.

TSE e Definition
iff  Traces(TS) C L(¢p) the Fischer Ladner closure c/(y) is the list of sub-formulas of ¢ (starting
iff  Traces(TS)\ L(p) = Traces(TS)NL(—¢) =@ from small formulas and ending with ¢):
= LTL model checking can be done in four steps Alyeeeydnyee s P
1. calculate GNBA Ats with Traces(TS) = L(A7s) (Chapter 2) Example
2. calculate GNBA A-, with L(—yp) = L(A-,) (this section)
3. calculate GNBA A for intersection of Ars and A, (Chapter 2)
4. perform non-emptyness test for £(.A) (Chapter 2)
RT (ICS @ UIBK) Chapter 3 29/56 RT (ICS @ UIBK) Chapter 3 30/56
p-Expansion Example
idea:

e expand word by new row for each 9 € cl(¢) which is not an atomic
proposition

e write truth-values of ¢ in i-th column for subword w[i..] p-expansion for ¢ = -b A (XaU b)

Definition

for w € (2")¥ and LTL-formula ¢ with c/(¢) = ¢1,...,m define the

p-expansion as word v € (2™)%:

v[if = 1iff wli.] = ¢;

(v[i] is the i-th letter of the infinite word v,
and v[i} is the j-th component of the vector v[i])

OEER) Chapter 3 31/56 RT (ICS @ UIBK) Chapter 3 32/56
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Idea of LTL to GNBA Translation

e GNBA guesses the p-expansion of w
e ...and checks that guesses are correct (mostly done locally!)

e ...and demands that value for whole formula is 1 for whole word w

Definition (Consistency Checks)

let c/(¢) = ¢1,-..,¢m: a sequence of two successive vectors
(b1,...,bm)T (c1,...,cm)T is consistent w.r.t. c/(;p) iff whenever
pj = true then b;
pj = Y then bj = —|bj1
pj = i Npjp then by < (bj A bp)
pj = X(pjl then bj < Cj

i =i Upj, then bj < (b, V (b, Ac))

(for last check recall expansion law: ¢, Upj, = ¢, V (pj AX (¢, Ugj)))

RT (ICS @ UIBK) Chapter 3 33/56

Translating LTL to GNBA

Definition (GNBA for an LTL formula ¢)

let cl(p) =a1,...,an, Pntl,s---,Pm Where oy, =@
define A, = (2™ W {q0},2", 90,0, F1, ..., Fx) where

o (ci,....cm)T €6((b1,...,bm)T,(d1,...,dn)T) iff

1. e diforallj<n (expansion)

2. (b1,...,bm)" (c1,...,cm)" is consistent (consistent expansion)
i (C]_,...,Cm)TE(S(QO,(dl,...,dn)T) Iﬂ:

1. ¢g&dforallj<n (expansion)

2. ¢m (¢ is satisfied)

o if ;= j, Uy, is i-th U-subformula in c/(¢) then

Fi={(b1,. ., bm)T | =b; V by}

COEER) Chapter 3 35/56

Consistency Checks and LTL-Models
Lemma
w = ¢ iff there exists an expansion v € (2™)¥ of w such that
1. v[i] v[i + 1] is consistent for all i
2. v[0]" =
3. whenever ¢; = p; Uy, and v[/]f =1 then
there exists i’ > i such that v[i'}? =1

RT (ICS @ UIBK) Chapter 3
Example
RT (ICS @ UIBK) Chapter 3

34/56
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Example (parts of GNBA)

OENER) Chapter 3 37/56

Optimizing the Translation

e observation: many states do not have outgoing transitions

e reason: several inconsistencies due to Boolean conditions
example: if p; = pj; A @), then b; cannot be freely chosen;
value of b; is determined by b; and b,
e idea: take reduced Fischer-Ladner closure c/’(¢) which only contains
e atomic propositions
e X-formulas
e U-formulas
e ...and no other formula
and then incorporate the Boolean connectives directly into
consistency, final states, ...

COEER) Chapter 3 39/56

Soundness of Translation

Theorem
for every LTL formula ¢
L(p) = L(Ay)
Proof of Lemma.
by induction on ¢ using the consistency checks |

Proof of Theorem.
e construction of A, directly corresponds to requirements 1 and 2 in
lemma

e remaining difficulty:
show that visiting F; infinitely often is the same as requirement 3 in
lemma for i-th U-subformula ¢; = ¢;;, Uy, |

OEIER) Chapter 3 38/56

Towards an Improved Translation

let c/'(¢) = ¢1,...,m over AP ={a1,...,a,}
Definition (Unwinding)

the unwinding of a subformula ¢ of ¢ w.r.t. a vector B = (by,...,bp) is
defined as Ug(1)) where

Ug(a;) = b; for all atomic propositions a;
Up(true) = true
Up(—1p) = ~Up(Y)
U (1 A 2) = Up(Y1) A UB(2)
) —
)

Up(X 1)) = bj where n < j < mis the index s.t. ¢; = X1
Up(1 U x) = bj where n < j < mis the index s.t. p; =1 Uy

COEER) Chapter 3 40/56
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Towards an Improved Translation (2) Improved Translation

Definition
let c/'(¢) = a1,---,an, Pnil,---,Pm define
Definition (Compressed Consistency Checks) A, = (2" {q0},2", 90,0, F1, ..., Fi) where
let c/'(¢) = ¢1,---,¢m; a sequence of two successive vectors e (c1,..-scm)T €8((b1,. .., bm)T . (d1,...,dy)7) iff
B = (b1,...,bm)" and C = (c1,...,cm)" is consistent w.r.t. c/'(¢) iff 1. gediforallj<n (expansion)
whenever 2. (b1,...,bn)7 (c1,...,cm)" is consistent (consistent expansion)
o C=(c1,---,¢m)" €6(qo,(d1,-..,dn)T) iff
pj =Xt then bj & Uc(v) 1. ¢ dforallj<n (expansion)
¢ =vUx then b < (Up(x) V (Us(¥) A g)) 2. Uc(p) (i is satisfied)
e if o =9 Ux is i-th U-subformula in c/(y) then
Fi={B=(b1,....bm)" | ~b; VUs(x)}
RT (ICS @ UIBK) Chapter 3 41/56 RT (ICS @ UIBK) Chapter 3 42/56
Example Example GNBA

01

\ 10
00

COEER) Chapter 3 43/56 RT (ICS @ UIBK) Chapter 3 44/56
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Soundness of the Improved Transformation Complexity of LTL Model Checking
LTL model Checking: given TS and ¢ check

Theorem L(A3) =2
both transformations yield essentially the same automata; the only
difference is that where
e whenever p; = p;; A @, then the i-th component is missing in the A1 = Ats
improved transformation; the state without the i-th component of the A — A
improved transformation is corresponding to the state 2 I
(... biyse. by, ... bi,...) where by = b A by; Az = Aaina,

moreover, all other states in the non-improved translation where
b; # bj, A\ bj, have no outgoing states

number of states:

e a similar property is true for negations A | TS| +1
=- soundness of the non-improved translation implies soundness of the Ay : 2APIHIel 4 where || is number of temporal operators in ¢
improved one Az (| TS| + 1) - (2APIHI#l 1 1)

= total complexity of O(| TS| - 21APIHI#l)

RT (ICS @ UIBK) Chapter 3 45/56 RT (ICS @ UIBK) Chapter 3
Lower bound Proof (1)
Theorem

there exists a family of LTL formulas p, over AP = {a} with
lon| = O(poly(n)) such that every NBA A, with L(A,) = L(¢n) has at
least 2" states

OEIER) Chapter 3 47/56 RT (ICS @ UIBK) Chapter 3
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Proof (2) Is Bad Complexity a Result of Automata Approach? No!

Theorem
the inverted LTL model checking problem
TS W= ¢
is NP-hard
Corollary

the LTL model checking problem TS |= ¢ is coNP-hard

= assuming P # NP, LTL model checking cannot be done in polynomial
time

RT (ICS @ UIBK) Chapter 3 49/56 RT (ICS @ UIBK) Chapter 3 50/56

Proving NP-hardness NP-Hardness of “TS [~ ¢"

to prove NP-hardness of problem p one can use a reduction:
1. find another problem g which is known to be NP-hard
2. reduce g to p in polynomial time, i.e.,

find a mapping i : ¢ — p such that

e g has a positive answer iff 1(q) has a positive answer
e 4, can be computed in polynomial time

OEER) Chapter 3 51/56 RT (ICS @ UIBK) Chapter 3 52/56
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Example Complexity is Even Worse . . .

Theorem (Sistla, Clarke)
the LTL model checking problem TS |= ¢ is PSPACE-hard

RT (ICS @ UIBK) Chapter 3 53/56 RT (ICS @ UIBK) Chapter 3 54/56
... But There is a Limit Summary
e LTL is a logic for specifying the allowed traces of a system; it extends
propositional logic by temporal operators like X and U
Theorem . ) e LTL model checking can be done by constructing a GNBA and then
the LTL model checking problem TS = ¢ is PSPACE-complete checking whether this GNBA accepts at least one word, the

counterexample
e LTL model checking is PSPACE-complete

OEER) Chapter 3 55/56 RT (ICS @ UIBK) Chapter 3 56/56
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