1. Consider the following sentences:
(1) Each dragon is happy if all its children are happy.
(2) Dragons can fly if and only if at least one of their ancestors can fly.
(3) A dragon is green if one of its parents is red.
(4) Green dragons cannot spit fire.
(5) There are red dragons that cannot fly.
a) For each of the sentences above, give a first-order formula that formalises it. Use (only) the following constants, functions and predicates:

- constants: green, red.
- functions: colour (x).
- predicates: $\operatorname{Dragon}(x), \operatorname{Happy}(x), \operatorname{Fly}(x), \operatorname{Child}(x, y)$, Ancestor (x, y), Spitfire (x), $=$.
Note that the predicate Child (x, y) is to be interpreted as " x is a child of y " and the predicate Ancestor (x, y) as " x is a ancestor of y ".
b) Show that your formalisation is satisfiable.

2. Consider the following ill-defined definition.

Wrong Definition. Let \mathcal{A}, \mathcal{B} be two structures (with respect to the same language $\mathcal{L})$ and let A, B denote the respective domains. Suppose there exists a bijection $m: A \rightarrow B$ such that
a) for any individual constant $c, m\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$,
b) for any n-ary function constant f and all $a_{1}, \ldots, a_{n} \in A$ we have

$$
m\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right), \text { and }
$$

then m is called an isomorphism. We write $\mathcal{A} \cong{ }_{1} \mathcal{B}$ if there exists an isomorphism $m: \mathcal{A} \rightarrow \mathcal{B}$.
a) The definition is wrong, correct it.
b) Let \mathcal{A}, \mathcal{B} be structures such that $\mathcal{A} \cong \mathcal{B}$. Then we have: $\mathcal{A} \models F$ iff $\mathcal{B} \models F$. Give counter-examples if the (ill-defined) relation \cong_{1} is used instead of \cong.
3. Consider the following sentences in prenex normal form:
$-F_{1}: \Longleftrightarrow \forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y))$
$-F_{2}: \Longleftrightarrow \forall x(\exists y \mathrm{P}(y) \rightarrow \mathrm{P}(x))$
$-F_{3}: \Longleftrightarrow \forall x(\mathrm{Q}(x) \rightarrow \exists y(\mathrm{P}(y) \wedge \mathrm{R}(y, x))) \rightarrow \exists x \mathrm{~S}(x)$
a) Define the SNFs $G_{i}(i=1,2,3)$ of the sentences F_{i} given above.
b) Consider the following claim: For any formula F and its SNF G we have $F \equiv G$. Decide whether this claim is correct, and explain your answer.
c) Let $\mathcal{L}=\{\mathrm{c}, \mathrm{f}, \mathrm{P}\}$. Consider the sentence $G: \Longleftrightarrow \mathrm{P}(\mathrm{c}) \wedge \forall x(\mathrm{P}(x) \rightarrow \mathrm{P}(\mathrm{f}(x))) \wedge$ $\exists x \neg \mathrm{P}(x)$. Extend \mathcal{L} to a language \mathcal{L}^{\prime} such that there exists a Herbrand model \mathcal{I} (of \mathcal{L}^{\prime}) of G.
4. Consider the following set of clauses \mathcal{C} (individual constants a, b, predicate constants $P, Q, R, S):$

$$
\{\mathrm{P}(x) \vee \mathrm{Q}(x) \vee \mathrm{R}(x, y), \neg \mathrm{P}(x), \neg \mathrm{Q}(\mathrm{a}), \mathrm{S}(\mathrm{a}, y) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{S}(x, \mathrm{~b}), \neg \mathrm{S}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{R}(\mathrm{a}, \mathrm{~b})\}
$$

a) Is \mathcal{C} satisfiable or not?
b) If \mathcal{C} is satisfiable, give a model \mathcal{I} such that $\mathcal{I} \models \mathcal{C}$ otherwise, give an ordered resolution proof to verify this. You may assume the following relations on ground atoms and lift \succ to a order on literals as in the lecture.

$$
\mathrm{P}\left(t_{1}\right) \succ \mathrm{Q}\left(t_{2}\right) \succ \mathrm{S}\left(t_{3}, t_{4}\right) \succ \mathrm{R}\left(t_{5}, t_{6}\right)
$$

for any ground terms t_{1}, \ldots, t_{6}.
5. Determine whether the statements on the answer sheet are true or false. Every correct answer is worth 1 points (and every wrong -1 points).

- Let $\mathcal{I}_{1}, \mathcal{I}_{2}$ be interpretations such that the respective universes coincide and suppose $\mathcal{I}_{1}, \mathcal{I}_{2}$ coincide on the constants in the closed formula F. Then $\mathcal{I}_{1} \models F$ iff $\mathcal{I}_{2} \models F$.
- For all formulas F and all sets of formulas \mathcal{G} we have that $\mathcal{G} \models F$ iff $\operatorname{Sat}(\mathcal{G} \cup$ $\{\neg F\}$).
- Let A, B be sets such that there exists a bijection m between them. Then if \mathcal{A} is a structure with domain A, there exists a structure \mathcal{B} with domain B such that $\mathcal{A} \cong \mathcal{B}$.
- If there exists a finite subset of a set of formulas \mathcal{G} that has a model, then \mathcal{G} has a model.
- If a set of formulas \mathcal{G} has an infinite model, then \mathcal{G} also has a countable infinite model.
- If the sentence $A \rightarrow C$ holds, then there exists a sentence B such that $A \rightarrow B$ and $B \rightarrow C$.
- Second-order logic is neither complete, compact, nor satisfies LöwenheimSkolem.
- Reachability in directed graphs is expressible as existential, first-order formula.
- It is undecidable whether two given terms s, t are unifiable.
- For any first-order sentence F there exists a set of clauses $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ such that $F \approx \forall x_{1} \ldots \forall x_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)$.

