- 1. Consider the following sentences:
 - ① Each smurf is happy if all its children are happy.
 - 2 Smurfs are green if at least two of their ancestors are green.
 - 3 A smurf is really small if one of its parents is large.
 - 4 Large smurfs are not really small.
 - ⑤ There are red smurfs that are large.
 - a) For each of the sentences above, give a first-order formula that formalises it. Use *only* the following constants, functions and predicates:
 - constants: green, red.
 - functions: colour(x).
 - predicates: Smurf(x), Large(x), ReallySmall(x), Happy(x), Child(x, y), Ancestor(x, y), =. (5 pts)
 - b) Show that your formalisation is satisfiable. (3 pts)
- 2. Consider the following attempt of a definition:

Wrong Definition. An interpretation \mathcal{I} is a structure \mathcal{A} and the value of a term t (possible containing free variables) with respect to \mathcal{I} is defined as follows:

$$t^{\mathcal{I}} := f^{\mathcal{A}}(t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \quad \text{if } t = f(t_1, \dots, t_n) .$$

- a) Give an example, where this definition is ill-defined.
- (5 pts)

(5 pts)

- b) Correct the definition.
- 3. Consider the following sentences in prenex normal form:
 - $-F_1: \iff \forall y \forall x (x > y \to \exists z (x > z \land z > y))$
 - $-F_2 : \iff \forall x (\exists y \mathsf{Q}(y) \to \mathsf{P}(x))$
 - $-F_3 : \iff \forall x (\mathsf{P}(x) \to \exists y (\mathsf{Q}(y) \lor \mathsf{R}(y,x))) \to \exists x \mathsf{S}(x)$
 - a) Define the SNFs G_i (i = 1, 2, 3) of the sentences F_i given above. (6 pts)
 - b) Consider the following claim: For any formula F and its SNF G we have $F \equiv G$. Decide whether this claim is correct, and explain your answer. (4 pts)
 - c) Let $\mathcal{L} = \{c, f, P\}$. Consider the sentence $G : \iff P(c) \land \forall x (P(x) \to P(f(x))) \land \exists x \neg P(x)$. Extend \mathcal{L} to a language \mathcal{L}' such that there exists a Herbrand model \mathcal{I} (of \mathcal{L}') of G. (3 pts)
- 4. Consider the following set of clauses C (individual constants a, b, predicate constants P, Q, R, S):

$$\{P(x) \lor Q(x) \lor R(x,y), \neg P(x), \neg Q(a), S(a,y) \lor \neg R(a,y) \lor S(x,b), \neg S(a,b) \lor \neg R(a,b)\}$$

- a) Is \mathcal{C} satisfiable or not? (2 pts)
- b) If \mathcal{C} is satisfiable, give a model \mathcal{I} such that $\mathcal{I} \models \mathcal{C}$ otherwise, give an ordered resolution proof to verify this. You may assume the following relations on ground atoms and lift \succ to a order on literals as in the lecture.

$$P(t_1) \succ Q(t_2) \succ S(t_3, t_4) \succ R(t_5, t_6)$$
,

for any ground terms t_1, \ldots, t_6 .

(7 pts)

5. Determine whether the statements on the answer sheet are true or false. Every correct answer is worth 1 points (and every wrong -1 points).

(10 pts)

- Let $\mathcal{I}_1, \mathcal{I}_2$ be interpretations such that the respective universes coincide and suppose $\mathcal{I}_1, \mathcal{I}_2$ coincide on the constants in the closed formula F. Then $\mathcal{I}_1 \models F$ iff $\mathcal{I}_2 \models F$.
- Let \mathcal{A} , \mathcal{B} be structures and $\mathcal{A} \cong \mathcal{B}$. Then for every sentence F we have $\mathcal{A} \models F$ iff $\mathcal{B} \models F$.
- For all formulas F and all sets of formulas G we have that $G \models F$ iff $\mathsf{Sat}(G \cup \{\neg F\})$.
- Suppose \mathcal{G} is a set of formulas and $\mathcal{G} \models F$. Then there exists a finite subset $\mathcal{G}_0 \subseteq \mathcal{G}$ such that $\mathcal{G}_0 \models F$.
- Let A, B be sets such that there exists a bijection m between them. Then if A is a structure with domain A, there exists a structure B with domain B such that $A \cong B$.
- Suppose the sentence $A \to C$ is valid. Then there exists no sentence B such that $A \to B$ and $B \to C$ are valid.
- If a set of formulas \mathcal{G} has an infinite model, then \mathcal{G} has no countable infinite model.
- If the sentence $A \to C$ holds, then there exists a sentence B such that $A \to B$ and $B \to C$.
- For any first-order sentence F there exists a set of clauses $C = \{C_1, \ldots, C_m\}$ such that $F \approx \forall x_1 \ldots \forall x_n (C_1 \wedge \cdots \wedge C_m)$.
- Reachability in directed graphs is expressible as a second-order formula.