University of Innsbruck 3 rd Exam		Institute of Computer Science October 7, 2011
Functional Programming	WS 2010/2011	LVA 703017
	Solutions	

1. Consider the λ -terms $I = \lambda x \cdot x$ and $K' = \lambda x y \cdot y$.

(a) Reduce the term $(\lambda p. p K')$ $((\lambda xyf. f x y) I I)$ to normal form, using the leftmost innermost reduction strategy.

Solution.

(12)

(13)

$$\begin{array}{l} (\lambda p. p \ K') \ ((\lambda xyf. f \ x \ y) \ I \ I) \\ = \ (\lambda p. p \ (\lambda xy. y)) \ ((\underline{\lambda xyf. f \ x \ y) \ (\lambda x. x)} \ (\lambda x. x)) \\ \rightarrow_{\beta} \ (\lambda p. p \ (\lambda xy. y)) \ ((\underline{\lambda yf. f \ (\lambda x. x) \ y) \ (\lambda x. x)}) \\ \rightarrow_{\beta} \ (\underline{\lambda p. p \ (\lambda xy. y)) \ (\lambda f. f \ (\lambda x. x) \ (\lambda x. x))} \\ \rightarrow_{\beta} \ (\underline{\lambda f. f \ (\lambda x. x) \ (\lambda x. x)) \ (\lambda x. x)} \ (\lambda x. x) \\ \rightarrow_{\beta} \ (\underline{\lambda y. y) \ (\lambda x. x)} \ (\lambda x. x) \\ \rightarrow_{\beta} \ (\underline{\lambda y. y) \ (\lambda x. x)} \ (\lambda x. x) \\ \rightarrow_{\beta} \ \overline{\lambda x. x} \end{array}$$

(b) Reduce the term $(\lambda p. p K')$ $((\lambda xyf. f x y) I I)$ to normal form, using the leftmost outermost reduction strategy.

Solution.

$$\begin{array}{l} (\lambda p. p \ K') \ ((\lambda xyf. f \ x \ y) \ I \ I) \\ = \ (\lambda p. p \ (\lambda xy. y)) \ ((\lambda xyf. f \ x \ y) \ (\lambda x. x) \ (\lambda x. x)) \\ \rightarrow_{\beta} \overline{(\lambda xyf. f \ x \ y) \ (\lambda x. x) \ (\lambda x. x) \ (\lambda xy. y)} \\ \rightarrow_{\beta} \overline{(\lambda yf. f \ (\lambda x. x) \ y) \ (\lambda x. x) \ (\lambda xy. y)} \\ \rightarrow_{\beta} \overline{(\lambda f. f \ (\lambda x. x) \ (\lambda x. x)) \ (\lambda xy. y)} \\ \rightarrow_{\beta} \overline{(\lambda xy. y) \ (\lambda x. x) \ (\lambda x. x)} \\ \rightarrow_{\beta} \overline{(\lambda y. y) \ (\lambda x. x)} \\ \rightarrow_{\beta} \overline{(\lambda y. y) \ (\lambda x. x)} \\ \rightarrow_{\beta} \overline{\lambda x. x} \end{array}$$

2. Consider the three Haskell functions

Prove by induction that [last (y : xs)] = drop (length xs) (y : xs) for every list xs and arbitrary list element y.

(5) (a) Base case.

Functional Programming	WS 2010/2011	LVA 703017
	Solutions	

Solution.

Base Case (xs = []). By applying the definitions of the three functions, we prove the base case as follows: drop (length []) (y : []) = drop 0 (y : []) = [y] = [last (y : [])].

0) (b) Step case.

Solution.

Step Case (xs = z : zs). The IH is that [last (u : zs)] = drop (length zs) (u : zs) for arbitrary u.

 $\begin{aligned} [\texttt{last} (y:z:zs)] &= [\texttt{last} (z:zs)] \\ &\stackrel{\text{\tiny H}}{=} \texttt{drop} (\texttt{length} zs) (z:zs) \\ &= \texttt{drop} (\texttt{length} (z:zs)) (y:z:zs) \end{aligned}$

3. Consider the Haskell function:

sum [] = 0 sum (x:xs) = x + sum xs

(12) (a) Implement a tail-recursive variant of sum.

Solution.

```
sum xs = sum' xs 0
where
sum' [] acc = acc
sum' (x:xs) acc = sum' xs $! (x + acc)
```

Note: the use of ! above forces strict evaluation of <math display="inline">x + acc, thereby avoiding a memory leak.

(b) Use tupling to implement a function average, producing the same results as if defined via average xs = sum xs / length xs for all non-empty lists xs.

```
Solution.
```

```
average xs = if l == 0 then 0 else s / l
where
    (s, l) = average' xs 0 0
    average' [] s l = (s, l)
    average' (x:xs) s l = (average' xs $! (s + x)) $! (l + 1)
```

4. Consider the typing environment $E = \{\text{True} :: \text{Bool}\}.$

(12) (a) Use type checking to decide whether the expression let x = True in x x is of type Bool with respect to the environment E. Justify your answer.

(20)

(13)

	Solutions	
Functional Programming	WS 2010/2011	LVA 703017
3 rd Exam		October 7, 2011
University of Innsbruck		Institute of Computer Science

Solution. By the rule (let), we need to be able to construct a proof tree for $E, x : Bool \vdash x x :: Bool$. Since x is not of function type, this is impossible.

(b) Solve (if possible) the unification problem:

$$\alpha_1 \to \alpha_2 \to \alpha_3 \approx \alpha_4 \to (\alpha_2 \to \alpha_2) \to \alpha_5$$

Solution. After two applications of rule (d_2) , we obtain:

 $\begin{aligned} &\alpha_1 \approx \alpha_4 \\ &\alpha_2 \approx \alpha_2 \rightarrow \alpha_2 \\ &\alpha_3 \approx \alpha_5 \end{aligned}$

Now, no rule is applicable to the second equation and thus there is no solution.

(13)