Solutions

1. Consider the λ-terms $I=\lambda x . x$ and $K^{\prime}=\lambda x y . y$.
(a) Reduce the term $\left(\lambda p . p K^{\prime}\right)((\lambda x y f . f x y) I I)$ to normal form, using the leftmost innermost reduction strategy.

Solution.

$$
\begin{aligned}
& \left(\lambda p \cdot p K^{\prime}\right)((\lambda x y f \cdot f x y) I I) \\
& =(\lambda p \cdot p(\lambda x y \cdot y))(\underline{(\lambda x y f \cdot f x y)(\lambda x \cdot x)}(\lambda x \cdot x)) \\
& \rightarrow_{\beta}(\lambda p \cdot p(\lambda x y \cdot y))(\overline{(\lambda y f \cdot f(\lambda x \cdot x) y)(\lambda x \cdot x))} \\
& \rightarrow_{\beta} \frac{(\lambda p \cdot p(\lambda x y \cdot y))(\overline{(\lambda f \cdot f(\lambda x \cdot x)(\lambda x \cdot x))}}{} \\
& \rightarrow_{\beta} \overline{(\lambda f \cdot f(\lambda x \cdot x)(\lambda x \cdot x))(\lambda x y \cdot y)} \\
& \rightarrow_{\beta} \overline{(\lambda x y \cdot y)(\lambda x \cdot x)(\lambda x \cdot x)} \\
& \rightarrow_{\beta} \overline{(\lambda y \cdot y)(\lambda x \cdot x)}
\end{aligned}
$$

2. Consider the three Haskell functions
```
drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs
length [] = 0
length (_:xs) = 1 + length xs
last [x] = x
last (_:xs) = last xs
```

Prove by induction that [last $(y: x s)]=\operatorname{drop}($ length $x s)(y: x s)$ for every list $x s$ and arbitrary list element y.

Solutions

Solution.

Base Case ($x s=[]$). By applying the definitions of the three functions, we prove the base case as follows: $\operatorname{drop}($ length []$)(y:[])=\operatorname{drop} 0(y:[])=[y]=[$ last $(y:[])]$.
(b) Step case.

Solution.

Step Case $(x s=z: z s)$. The IH is that $[$ last $(u: z s)]=\operatorname{drop}($ length $z s)(u: z s)$ for arbitrary u.

$$
\begin{aligned}
{[\operatorname{last}(y: z: z s)] } & =[\operatorname{last}(z: z s)] \\
& \stackrel{H H}{=} \operatorname{drop}(\text { length } z s)(z: z s) \\
& =\operatorname{drop}(\text { length }(z: z s))(y: z: z s)
\end{aligned}
$$

3. Consider the Haskell function:
```
sum [] = 0
sum (x:xs) = x + sum xs
```

(a) Implement a tail-recursive variant of sum.

Solution.

```
sum xs = sum' xs 0
    where
        sum' [] acc = acc
        sum' (x:xs) acc = sum' xs $! (x + acc)
```

Note: the use of $\$$! above forces strict evaluation of $\mathrm{x}+\mathrm{acc}$, thereby avoiding a memory leak.
(b) Use tupling to implement a function average, producing the same results as if defined via average $\mathrm{xs}=$ sum xs / length xs for all non-empty lists $x s$.
Solution.

```
average xs = if l == 0 then 0 else s / l
    where
        (s, l) = average' xs 0 0
        average' [] s l = (s, l)
        average' (x:xs) s l = (average' xs $! (s + x)) $! (l + 1)
```

4. Consider the typing environment $E=\{$ True :: Bool $\}$.
(a) Use type checking to decide whether the expression let $x=$ True in $x x$ is of type Bool with respect to the environment E. Justify your answer.

Solutions

Solution. By the rule (let), we need to be able to construct a proof tree for $E, x:$ Bool \vdash $x x$:: Bool. Since x is not of function type, this is impossible.
(b) Solve (if possible) the unification problem:

$$
\alpha_{1} \rightarrow \alpha_{2} \rightarrow \alpha_{3} \approx \alpha_{4} \rightarrow\left(\alpha_{2} \rightarrow \alpha_{2}\right) \rightarrow \alpha_{5}
$$

Solution. After two applications of rule $\left(\mathrm{d}_{2}\right)$, we obtain:

$$
\begin{aligned}
& \alpha_{1} \approx \alpha_{4} \\
& \alpha_{2} \approx \alpha_{2} \rightarrow \alpha_{2} \\
& \alpha_{3} \approx \alpha_{5}
\end{aligned}
$$

Now, no rule is applicable to the second equation and thus there is no solution.

