
University of Innsbruck Institute of Computer Science

3rd Exam October 7, 2011

Functional Programming WS 2010/2011 LVA 703017

Solutions

1. Consider the λ-terms I = λx.x and K ′ = λxy.y.

(a) Reduce the term (λp. p K ′) ((λxyf. f x y) I I) to normal form, using the leftmost innermost(12)
reduction strategy.

Solution.
(λp. p K ′) ((λxyf. f x y) I I)
= (λp. p (λxy. y)) ((λxyf. f x y) (λx. x) (λx. x))
→β (λp. p (λxy. y)) ((λyf. f (λx. x) y) (λx. x))
→β (λp. p (λxy. y)) (λf. f (λx. x) (λx. x))
→β (λf. f (λx. x) (λx. x)) (λxy. y)
→β (λxy. y) (λx. x) (λx. x)
→β (λy. y) (λx. x)
→β λx. x

(b) Reduce the term (λp. p K ′) ((λxyf. f x y) I I) to normal form, using the leftmost outermost(13)
reduction strategy.

Solution.
(λp. p K ′) ((λxyf. f x y) I I)
= (λp. p (λxy. y)) ((λxyf. f x y) (λx. x) (λx. x))
→β (λxyf. f x y) (λx. x) (λx. x) (λxy. y)
→β (λyf. f (λx. x) y) (λx. x) (λxy. y)
→β (λf. f (λx. x) (λx. x)) (λxy. y)
→β (λxy. y) (λx. x) (λx. x)
→β (λy. y) (λx. x)
→β λx. x

2. Consider the three Haskell functions

drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

length [] = 0
length (_:xs) = 1 + length xs

last [x] = x
last (_:xs) = last xs

Prove by induction that [last (y : xs)] = drop (length xs) (y : xs) for every list xs and arbitrary
list element y.

(a) Base case.(5)



University of Innsbruck Institute of Computer Science

3rd Exam October 7, 2011

Functional Programming WS 2010/2011 LVA 703017

Solutions

Solution.

Base Case (xs = []). By applying the definitions of the three functions, we prove the base
case as follows: drop (length []) (y : []) = drop 0 (y : []) = [y] = [last (y : [])].

(b) Step case.(20)

Solution.

Step Case (xs = z : zs). The IH is that [last (u : zs)] = drop (length zs) (u : zs) for
arbitrary u.

[last (y : z : zs)] = [last (z : zs)]
IH= drop (length zs) (z : zs)
= drop (length (z : zs)) (y : z : zs)

3. Consider the Haskell function:

sum [] = 0
sum (x:xs) = x + sum xs

(a) Implement a tail-recursive variant of sum.(12)

Solution.

sum xs = sum' xs 0
where

sum' [] acc = acc
sum' (x:xs) acc = sum' xs $! (x + acc)

Note: the use of $! above forces strict evaluation of x + acc, thereby avoiding a memory
leak.

(b) Use tupling to implement a function average, producing the same results as if defined via(13)
average xs = sum xs / length xs for all non-empty lists xs.

Solution.

average xs = if l == 0 then 0 else s / l
where

(s, l) = average' xs 0 0
average' [] s l = (s, l)
average' (x:xs) s l = (average' xs $! (s + x)) $! (l + 1)

4. Consider the typing environment E = {True :: Bool}.
(a) Use type checking to decide whether the expression let x = True in x x is of type Bool with(12)

respect to the environment E. Justify your answer.



University of Innsbruck Institute of Computer Science

3rd Exam October 7, 2011

Functional Programming WS 2010/2011 LVA 703017

Solutions

Solution. By the rule (let), we need to be able to construct a proof tree for E, x : Bool `
x x :: Bool. Since x is not of function type, this is impossible.

(b) Solve (if possible) the unification problem:(13)

α1 → α2 → α3 ≈ α4 → (α2 → α2)→ α5

Solution. After two applications of rule (d2), we obtain:

α1 ≈ α4

α2 ≈ α2 → α2

α3 ≈ α5

Now, no rule is applicable to the second equation and thus there is no solution.


