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Perhaps the most favored property of today’s programs is that they are correct, that
is, do not contain errors (in the end it is often enough to have as few errors as possi-
ble). Programmers are sometimes already satisfied when they have a close look at their
program and do not find anything wrong. Obviously that does not suffice. The best
thing that could happen would be if one was able to prove that some program is cor-
rect. Since functional programming is so close to mathematics, some mathematical proof
methods (most notably induction) can directly be applied to functional programs giving
rise to rigorous correctness proofs. The process of proving the correctness of programs is
called program wverification. In this chapter one method to verify programs is presented:
Structural induction.

1 Structural Induction

Structural induction is a generalization of induction over natural numbers (aka mathe-
matical induction). In mathematical induction the goal is to prove that some property
holds for all natural numbers.

Example 1.1. Consider the formula

n-(n+1)

L4240 0=,

(1)

stating that the sum of the first n natural numbers can be computed by (n - (n+1))/2.

Proof. Using the principle of mathematical induction this can be proved by first consid-
ering the base case, which happens to be n = 0. Clearly the sum of the first 0 natural
numbers is 0. Substituting 0 for n in the right-hand side of (1) results in

0-(041)

=0.
2

Hence the statement is true for the base case. Afterwards the induction step (or step
case) is considered. For natural numbers that is, proving—under the assumption that
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the desired property holds for n—that the property does hold for n+ 1. The assumption

is called induction hypothesis (IH). In the current example the IH is
. 1
1+2+...+n:n<2+>.

It remains to be shown, that the left-hand side of (1) equals the right-hand side of
(1) if n 4+ 1 is substituted for n. After the substitution the left-hand side becomes
14+2+---4 (n+ 1) which can be transformed as follows:

1+2+---4+n)+(n+1)

:n-(n2+1)+(n+1) (byl[Hon14+2+---+mn)
= (n + 12 t2n+2 (denominator adaption)
= n’+n ;_ 2n +2 (multiplication)

= (n+1) 2 (n+2) (expansion)

which is the right-hand side of (1) where n + 1 is substituted for n and thus concludes
the proof. O

The intuition behind this proof method is the following: Suppose you want to convince
yourself that (1) does hold for n = 3. The available ingredients are a proof that the
formula does hold for n = 0 and a proof of the implication:

n-(n+1) (n+1)-(n+2)

If1—|—2+--~+n:fthen1+2+---+n+(n+l): 5 )

Then starting at 0 = (0- (0 + 1))/2 the implication can be used to get the result for 1
namely 1 = (1-(141))/2. Applying the implication another two times yields the desired
result 6 = (3-(3+1))/2. In this way, every natural number can be reached and hence
the property has to hold for all natural numbers.

Definition 1.1. The principle of mathematical induction states that if a property P does
hold for 0 (that is, P(0)) and P(n) — P(n+ 1), for all n € N, then P(n) for all n € N.
Put more formally,

(P(0) AVn. (P(n) — P(n+1))) — Vn. P(n).

Now it is obvious that the second bound occurrence of n does not depend on the first
and hence it could also be stated, for example,

(P(0) AVk. (P(k) — P(k +1))) — Yn. P(n)

since renaming bound variables does not change the meaning.



Let’s have a second look at the proof of (1). This time concentrating on the different
ingredients of the principle of mathematical induction that occur in it. The property P

is identified to be
* oz (x+1
P(x):<222(2 )>,
i=1

that is, the whole equation from (1) (which should be indicated by the surrounding
parentheses). From a functional programming point of view, P can be seen as a func-
tion of type Int -> Bool, returning True if the given number satisfies (1) and False
otherwise. A different reading of the formula

(P(0) A Vk. (P(k) — P(k + 1)) — Vn. P(n)

would be: “In order to prove ¥Yn. P(n), it suffices to show that P(0) is true and Vk. (P(k) —
P(k+1)) is true.” Hence there are two things to show. Firstly, P(0) which is called the
base case and secondly Vk. (P(k) — P(k+ 1)) which is called the step case. A different
reading of the step case would be: “Assuming that P(k) for arbitrary k (€ N) show that
also P(k + 1).” Hence to prove the step case, P(k) is used as a fact (called induction
hypothesis) and using this fact, P(k + 1) has to be shown. Consider the following proof
of (1):

Base Case The property P has to be shown for 0. By substituting = by 0 in P(z) this

translates to
ZO:i L 0-(0+1)
=t 2
=1

This is obviously true, hence P(0) has been shown.

Step Case Assume P(k) holds for an arbitrary k, that is, Zle = k'(k;l). Using this
try to show P(k + 1), that is,
kii_ (k+1) - ((k+1)+1)
B 2

i=1
This can be shown in a similar way as in the previous proof of (1).

Reconsidering what has been shown yields P(0) (from the base case) and Vk. (P(k) —
P(k+1)) (from the step case, since k has been arbitrary). Combining these two formulas
yields

P(0) AVE. (P(k) — P(k+1)).

This is exactly the premise of
(P(0) AVEk.(P(k) — P(k+1))) — ¥n. P(n)

and hence it follows that ¥n. P(n) denoting that P is true for all natural numbers.



In the case of structural induction a proof is very similar, the only difference being that
the number of base cases and step cases depends on the exact structure induction is
applied upon. In the following this structure is always an algebraic data type, where the
base cases correspond to constructors that do not refer recursively to the defined type
and the step cases correspond to those that do.

1.1 Structural Induction Over Lists

Recall the type of lists that could be defined by

data [a] = [1 | (:) a [a]
With respect to induction, lists are very similar to natural numbers. The base case being
‘[17 (that is, a list of length 0) and the step case P(zs) — P(z : xs) (that is, assuming
that the property holds for lists of length n it does also hold for lists of length n + 1).

Indeed structural induction over lists is exactly the same as mathematical induction on
the length of lists.

Example 1.2. As an example it is proved that the sum of the lengths of two lists is the
same as the length of the combined list, that is, for all lists zs and ys it holds that

length s + length ys = length (s ++ ys)

Where length is defined by

0
1 + length xs

length []
length (x:xs)

and ‘++ by

[] ++ ys
(x:x8) ++ ys

ys
x @ (xs ++ ys)

Proof. Since (++) is defined via recursion over its first argument, it is obvious to perform
induction over xs instead of ys (otherwise we would not be able to use the definition of
(++) when proving the step case).

Base Case (zs = []1). By the definition of length the length of an empty list is 0.
Hence the left-hand side equals length ys. By the definition of ‘++’ the right-hand
side also yields length ys.

Step Case (zs = z : zs). The IH is the equation

length zs + length ys = length (zs ++ ys)



Let’s try to transform the left-hand side for z : zs to the corresponding right-hand
side:

length(z : 2s) + length ys = 1 + length zs + length ys
Z 1 + length (zs ++ ys)
= length (z : (28 ++ ys))
= length ((z : 2s) ++ ys)

O]

Often, induction over lists is used to prove equality between two expressions. If one of
the expressions is intuitively easy to understand but inefficient and the other is very
complex but fast, then induction is a nice way to make sure that replacing the easy
expressions by the complex ones will not alter the result of a program (but maybe the
program will be much faster afterwards). However, to prove such equalities there is still
something missing. Consider for example the function head that is defined by

head (x:_)
head _

X

error "empty list"

What is the result of this function if it is applied to an empty list? In terms of program
execution some exception is raised and the program is aborted. But for the purpose of
induction proofs it is assumed that the result is undefined. Therefore, the value L (speak
‘bottom’) is introduced, representing undefined results of computations. Then

head []1 = 1.

1.1.1 Properties of List Functions

Consider again the append function on lists ++. It can be shown that nil is a left identity
with respect to list concatenation.

Lemma 1.1. ‘[]’ is a left identity of “++’, that is,
[ ++ as = as

for all lists xs.
Proof. This follows immediately from the definition of ++. O

It can also be shown that nil is a right identity for list concatenation.



Lemma 1.2. ‘[1’ is a right identity of ‘++’, that is,
xs ++ [1 = xs

for all lists xs.

Proof. By induction over the list zs.

Base Case (zs = [1). By the definition of ++ it follows immediately that [1 ++ [ = [].

Step Case (zs =y : ys). The IH is ys ++ [] = ys.

(y:ys)++ D =y: (ys++ [1) (definition of ++)

IH
=y :Ys.

Then by induction it can be proved that the evaluation order of ‘++’ is irrelevant.

Lemma 1.3. Concatenation of lists is associative, that is,
(s ++ ys) ++ zs = x5 ++ (ys ++ 2s).

Proof.

Base Case (zs = []). Starting at the left-hand side, the following derivation can be
done

([T ++ ys) ++ 25 = ys ++ 25 (by Lemma 1.1).
The same result can be obtained starting at the right-hand side:

[1 ++ (ys ++ 25) = ys ++ zs (by Lemma 1.1).

Step Case (zs = w : ws). The IH is (ws ++ ys) ++ zs = ws ++ (ys ++ zs). For the
left-hand side one gets:

((w : ws) ++ ys) ++ zs = (w : (ws ++ ys)) ++ zs (definition of ++)
=w : ((ws ++ ys) ++ zs) (definition of ++)
IH
=w : (ws ++ (ys ++ zs)).

And for the right-hand side the same result is obtained by the derivation step:

(w2 ws) ++ (ys ++ zs) = w : (ws ++ (ys ++ z5)) (definition of ++).



In mathematics, a structure consisting of a set (here the set of lists) and a binary
operation on it (here list concatenation) such that the binary operation is associative
and has an identity element (here the empty list) is called a monoid. Hence lists together
with list concatenation build a monoid.

Another application of induction is to prove that ++ can alternatively be implemented
in terms of foldr, where foldr is defined by

foldr £ b ] =D
foldr f b (x:xs) = f x (foldr f b xs)
This amounts to proving the following lemma.

Lemma 1.4.
zs ++ ys = foldr (:) ys xs

Proof.

Base Case (zs = []). The base case follows immediately from the definitions of ++ and
foldr.

Step Case (zs = w : ws). The IH is ws ++ ys = foldr (:) ys ws. Then by transforming
the left-hand side one gets:

(w : ws) ++ ys = w : (ws ++ ys)
IH

=w : (foldr (:) ys ws)
= foldr (:) ys (w : ws)

1.2 General Structures

Not only lists are usable for structural induction. In principle every algebraic data type
gives rise to possible structural induction proofs over that type.

1.2.1 Binary Trees

As an example binary trees are used to show the more general case of structural induction
with several step cases. Recall the definition of the type BTree a given by

data BTree a = Empty | Node a (BTree a) (BTree a)
A binary tree is called perfect if all leaf nodes have the same depth (that is, all paths

from the root to some leaf node have the same length). By structural induction the
following lemma can be shown.



Lemma 1.5. A perfect binary tree t of height n has exactly 2" — 1 nodes.

Proof.

Base Case (¢t = Empty). By definition of height, the height of an empty tree is 0.
Substituting 0 for n in the goal results in 2° — 1 = 0 which happens to be the
number of nodes in an empty tree.

Step Case (t = Node v [ 7). Since t is a perfect binary tree of height n + 1 it follows
that [ and r are perfect binary trees of respective heights n. Hence by IH it holds
that [ and r both have 2" — 1 nodes. Since t is built by combining I, r, and one
additional node, the number of nodes in ¢ equals the number of nodes in [ plus the
number of nodes in r plus one, that is, 2- (2" — 1) + 1. The proof concludes by the
following derivation:

2. 2"-1)+1=2-2"-2+1 (multiplication)
=2-2"-1 (addition)
=21

1.2.2 \-Terms

Another example are A-terms. Recall that a A-term ¢ is of the form

def

£ | O t) | (¢ )

with € V, and that the (Haskell) type of A-terms is defined by

data Term = Var String
| Lab String Term
| App Term Term

The base case for induction proofs is the case without a recursive reference to the def-
inition of terms itself (that is, x for A-terms and Var for the Haskell type). For the
step cases abstractions ((Az.t) and Lab, respectively) and applications ((¢ t) and App,
respectively) have to be considered for A-terms and the corresponding type. First let’s
prove that under the assumption that there is a unique mapping between variables x € V
and Haskell values of type String, there is exactly one instance of the type Term for
every A-term t. This is done via structural induction over t.

Base Case (t = z). For the case of a variable Var x can be taken for a uniquely
determined value x of type String.



Step Case (t = (Az.s)). The IH is that there is a unique instance of Term that cor-
responds to the term s. Let’s call this instance s. Then by taking a uniquely
determined identifier x, the instance Lab x s can be built.

Step Case (¢t = (u v)). By IH there are unique representations for u and v respectively
(since they are both structurally smaller than t). Let’s call these values u and v.
Then the instance App u v can be built.

It is left as an exercise to show that (under the above assumption) there is a unique
A-term t for every value of type Term. Both proofs together establish that A-terms and
values of type Term are equivalent, that is, it does not matter whether to use induction
over a A-term t or its Term t.

Example 1.3. It can be shown that for every A-term ¢ the application (¢ t), that is, ¢
applied to itself, has an odd number of opening parentheses.

Proof.

Base Case (¢t = x). The term (x x) has one opening parenthesis. Since 1 is an odd
number that concludes the base case.

Step Case (t = (Ax.u)). The IH is that (u u) has an odd number of opening parentheses.
In the application ((Az.u) (Ax.u)) two more opening parentheses are added to
those of (u w). This results in an odd number.

Step Case (t = (u v)). By IH (u u) and (v v) both have an odd number of opening
parentheses. In the application ((u v) (u v)) one more opening parenthesis in
addition to those of (u u) and (v v) is added. This results in an odd number.

O]
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