
Functional Programming
Selected Solutions Week 8

(for December 10, 2010)

4. Recall the definitions of range and rng:

range m n | m > n = []

| otherwise = m : range (m+1) n

rng xs m n | m > n = xs

| otherwise = rng (n:xs) m (n-1)

We first prove an auxiliary lemma about range, namely

m ≤ n =⇒ range m (n− 1) ++ [n] = range m n (?)

Here, we use mathematical induction over |n −m| (that is, the absolute value of
the difference n−m; this guarantees that we cannot slip below 0):

� Base Case (|n−m| = 0). Since m ≤ n, we have m = n, and thus

range m (n− 1) ++ [n] = [] ++ [n] (since m > m− 1)
= [n]
= m : []

= m : range (m + 1) n (since m + 1 > m)
= range m n (since m 6> m)

� Step Case (|n−m| = k + 1). We obtain the IH

range (m + 1) (n− 1) ++ [n] = range (m + 1) n

since |n− (m + 1)| = k. The proof concludes as follows:

range m (n− 1) ++ [n] = m : range (m + 1) (n− 1) ++ [n]
IH
= m : range (m + 1) n
= range m n

Having the auxiliary lemma, we now prove the following equivalence (a trivial
consequence of which is range' m n = range m n):

rng xs m n = range m n ++ xs

Again, we use mathematical induction over |n−m|.

� Base Case (|n−m| = 0). Hence, m = n, and thus

rng xs m n = rng (n : xs) m (n− 1)
= n : xs
= n : [] ++ xs
= m : range (m + 1) n ++ xs
= range m n ++ xs

� Step Case (|n−m| = k + 1). We obtain the IH

rng (n : xs) m (n− 1) = range m (n− 1) ++ (n : xs)

since |(n− 1)−m| = k. The proof concludes by a case distinction. If m > n,
we have

rng xs m n = xs
= [] ++ xs
= range m n ++ xs

Otherwise, we have m ≤ n (which lets us apply ?).

rng xs m n = rng (n : xs) m (n− 1)
IH
= range m (n− 1) ++ (n : xs)
= (range m (n− 1) ++ [n]) ++ xs
= range m n ++ xs (by ?)

6. We use induction over the structure of xs .

� Base Case (xs = []). Trivial.

� Step Case (xs = y : ys). If n = 0, the equivalence does trivially hold.
Otherwise, we have n = k + 1 for some k and the IH

splitAt' k ys = (take k ys , drop k ys)

The proof concludes as follows:

splitAt' n xs = (y : zs ,ws) (for (zs ,ws) = splitAt' k ys)
IH
= (y : take k ys , drop k ys)
= (take n xs , drop n xs)

