Functional Programming Selected Solutions Week 8 (for December 10, 2010)

4. Recall the definitions of range and rng:
```
range m n | m > n = []
    | otherwise = m : range (m+1) n
rng xs m n | m > n = xs
    | otherwise = rng (n:xs) m (n-1)
```

We first prove an auxiliary lemma about range, namely

$$
m \leq n \Longrightarrow \text { range } m(n-1)++[n]=\text { range } m n
$$

Here, we use mathematical induction over $|n-m|$ (that is, the absolute value of the difference $n-m$; this guarantees that we cannot slip below 0):

- Base Case $(|n-m|=0)$. Since $m \leq n$, we have $m=n$, and thus

$$
\begin{aligned}
\text { range } m(n-1)++[n] & =[]++[n] & & (\text { since } m>m-1) \\
& =[n] & & \\
& =m:[] & & (\text { since } m+1>m) \\
& =m: \text { range }(m+1) n & & (\text { since } m \ngtr m)
\end{aligned}
$$

- Step Case $(|n-m|=k+1)$. We obtain the IH

$$
\text { range }(m+1)(n-1)++[n]=\text { range }(m+1) n
$$

since $|n-(m+1)|=k$. The proof concludes as follows:

$$
\text { range } \begin{aligned}
m(n-1)++[n] & =m: \operatorname{range}(m+1)(n-1)++[n] \\
& \stackrel{\text { 世H }}{=} m \text { : range }(m+1) n \\
& =\text { range } m n
\end{aligned}
$$

Having the auxiliary lemma, we now prove the following equivalence (a trivial consequence of which is range ' $m n=$ range $m n$):

$$
\text { rng } x s m n=\text { range } m n++x s
$$

Again, we use mathematical induction over $|n-m|$.

- Base Case $(|n-m|=0)$. Hence, $m=n$, and thus

$$
\begin{aligned}
\operatorname{rng} x s m n & =\operatorname{rng}(n: x s) m(n-1) \\
& =n: x s \\
& =n:[]++x s \\
& =m: \text { range }(m+1) n++x s \\
& =\operatorname{range} m n++x s
\end{aligned}
$$

- Step Case $(|n-m|=k+1)$. We obtain the IH

$$
\operatorname{rng}(n: x s) m(n-1)=\text { range } m(n-1)++(n: x s)
$$

since $|(n-1)-m|=k$. The proof concludes by a case distinction. If $m>n$, we have

$$
\begin{aligned}
\operatorname{rng} x s m n & =x s \\
& =[]++x s \\
& =\text { range } m n++x s
\end{aligned}
$$

Otherwise, we have $m \leq n$ (which lets us apply \star).

$$
\begin{align*}
\operatorname{rng} x s m n & =\operatorname{rng}(n: x s) m(n-1) \\
& \stackrel{\text { IH }}{=} \text { range } m(n-1)++(n: x s) \\
& =(\text { range } m(n-1)++[n])++x s \\
& =\text { range } m n++x s
\end{align*}
$$

6. We use induction over the structure of $x s$.

- Base Case (xs = []). Trivial.
- Step Case $(x s=y: y s)$. If $n=0$, the equivalence does trivially hold. Otherwise, we have $n=k+1$ for some k and the IH

$$
\text { splitAt' } k y s=(\text { take } k y s, \operatorname{drop} k y s)
$$

The proof concludes as follows:

$$
\begin{array}{rlr}
\text { splitAt' } n x s & =(y: z s, w s) & (\text { for }(z s, w s)=\text { splitAt' } k y s) \\
& \stackrel{\text { H }}{=}(y: \text { take } k y s, \operatorname{drop} k y s) & \\
& =(\text { take } n x s, \text { drop } n x s) &
\end{array}
$$

