Computation of Market Equilibria by Convex Programming

Game Theory & Planning

- Model Definition
- Solving the Fisher Model
- Solving Exchange Economies
- Potential Application

Motivation

3

- Markets dominate our economic world
 In many cases stable price are established
 win-win situation for (all) participants
- Today's goal: present models for markets
 Define stable conditions (equilibria)
 - Define algorithms to compute those
 - Ultimately: use models to cope with similar problems

The Model (1)

□ A market *M* is given by

- n goods and
- m economic agents / traders
 - each trader i has a concave utility function

$$u_i: \mathbb{R}^n_+ \to \mathbb{R}_+$$

and an initial endowment

$$w_i = (w_{i1}, \dots, w_{in}) \in \mathbb{R}^n_+$$

The Model (2)

At given prizes

$$\pi = (\pi_1, \ldots, \pi_n) \in \mathbb{R}^n_+$$

- trader *i* will sell her endowment w_i , and get the bundle of goods

$$x_i = (x_{i1}, \dots, x_{in}) \in \mathbb{R}^n_+$$

- maximizing $u_i(x)$ subject to the *budget* constrain

$$\pi \cdot x_i \le \pi \cdot w_i$$

Market Equilibrium

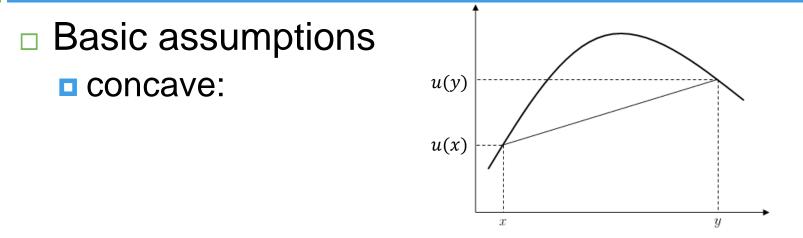
7

- □ An equilibrium is a vector of prices $\pi = (\pi_1, ..., \pi_n) \in \mathbb{R}^n_+$ such that:
 - for each trader *i*, there is a bundle $\bar{x}_i = (\bar{x}_i, ..., \bar{x}_i)$ of goods
 - the vector \bar{x}_i is maximizing $u_i(x)$ subject to the constrains $\pi \cdot x_i \leq \pi \cdot w_i$ and $x_i \in \mathbb{R}^n_+$

• for each good j, $\sum_i \bar{x}_{ij} \leq \sum_i w_{ij}$

Arrow and Debreu('54): such an equilibrium exists
 Problem: how to computing such equilibria?

Utility Functions (1)



non-satiable: $\forall x \in \mathbb{R}^n_+$. $\exists y \in \mathbb{R}^n_+$: u(y) > u(x)monoton: $y \ge x \Rightarrow u(y) \ge u(x)$

□ Frequent assumption
□ homogeneous $\forall x, \alpha > 0 : u(\alpha x) = \alpha u(x)$

Utility Functions (2)

9

- □ Popular examples of homogeneous utility functions:
 □ Linear utility function: u_i(x) = ∑_j a_{ij}x_{ij}
 □ Cobb-Douglas function: u_i(x) = ∏_i(x_{ij})^{a_{ij}}, (∑_i a_{ij} = 1)
 - Leontief (fixed-proportion) function: $u_i(x) = \min_i a_{ij} x_{ij}$
- General, constant elasticity of substitution form (CES)

$$u_i(x) = \left(\sum_j (a_{ij} x_{ij})^{\rho}\right)^{\frac{1}{\rho}}$$

where $-\infty < \rho < 1$, $\rho \neq 0$

The Fisher Model

Market consisting of
 n goods sold by <u>one</u> seller
 total of q_j > 0 of good j available

m utility maximizing buyers

- concave utility function $u_i: \mathbb{R}^n_+ \to \mathbb{R}_+$
- Initial endowment $e_i > 0$ of money

• Budget constrain: $\pi \cdot x \leq e_i$

The Fisher Model (2)

Special case of the exchange economy model
 initial endowments are proportional
 $w_i = \delta_i w, \quad \delta_i > 0$

If traders have *homogeneous* utility functions
 => equilibrium can be obtained by solving a convex program (Eisenberg's program)

Convex Programs

13

Description of a convex optimization problem

minimize f(x)subject to $g_i(x) \le 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

- Elements:
 - A convex function $f(x): \mathbb{R}^n \to \mathbb{R}$ (to be minimized)
 - **Inequality constraints** $g_i(x) \le 0$
 - functions g_i are <u>convex</u>
 - **Equality constraints** $h_i(x) = 0$
 - functions h_i are <u>affine</u>

Convex Programs (2)

- □ Allow to …
 - Minimizing convex functions
 - Maximizing concave functions
 - test feasibility of convex/concave constraints
- There are polynomial algorithms for solving convex programs
 - Ellipsoid method (polynomial, but slow)
 - Interior-point method (polynomial, 1994)

Eisenberg's program

15

Any optimal solution of the convex program

$$\begin{array}{ll} \underset{x}{\text{maximize}} & \sum_{i} e_{i} \log u_{i}(x_{i}) \\ \text{subject to} & \sum_{i} x_{ij} \leq q_{j} \quad \text{for each } j \end{array}$$

on nonnegative variables x_{ij} yields an allocations of goods constituting a market equilibrium.

Note: no prices involved!

Linear Utility Functions

- □ Suppose that $u_i(x) = \sum_j a_{ij} x_{ij}$ and $w_{ij} > 0$ for each i,j
 - The problem of finding an equilibrium can be written as a finite convex <u>feasibility</u> problem:

Find ψ_i and nonnegative x_{ij} such that

$$\sum_{k} a_{ik} x_{ik} \ge a_{ij} \sum_{k} w_{ik} e^{\psi_k - \psi_j} \text{ for each } i, j$$
$$\sum_{i} x_i = \sum_{i} w_i$$

Any solution to this problem corresponds to an equilibrium obtained by setting $\pi_j = e^{\psi_j}$

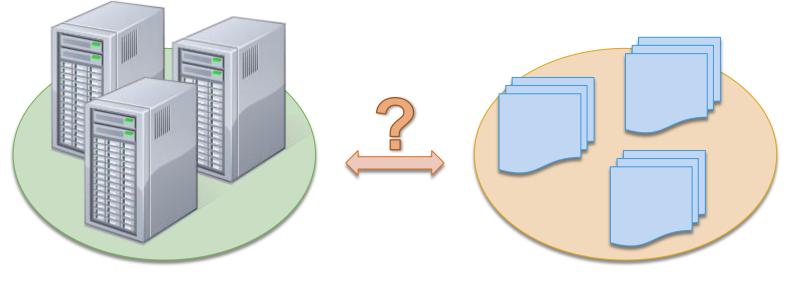
CES Utility Functions

- If ρ_i > 0: The Discrete Tâtonnement Process
 Iterative trial-and-error process
 delivers approximated solution in polynomial time
- If −1 ≤ ρ_i < 0: convex *feasibility* problem
 n inequality constrains of length O(m)
- □ If $\rho_i < -1$ for some trader *i*, the set of equilibria is no longer convex
 - can be reduced to computing a Nash equilibrium for twoplayer nonzero sum games
 - => solving Leontief exchange economies is PPAD hard

Resource Allocation

20

The Insieme Runtime:



Resources HW Threads, Memory, GPU Time <u>Control Flows</u> independent, parallel regions

Example Economic Model

- Based on the Fisher Model:
 - **g**oods:
 - Each CPU is a kind of good (hardware threads)
 - The shared memory of each computer
 - Each GPU is a good (time shared)
 - buyers: the parallel regions + one idle process
 - Each region defines its own utility function
 - Each region has an initial endowment (money)
 - Can be used to prioritize the execution of some regions

Problem: Utility Functions

- Linear utility functions
 - would make memory and CPUs exchangeable (!)
- Cobb-Douglas functions
 same amount of money for each good?
- Leontief (fix-proportion) function
 - Good for product mix
 - Problem of choosing between options ...

Solution

Sum of convex functions is convex!

+ preserves all other utility function constraints

- Utility function:
 - For each node ...
 - => define one fixed-proportion utility function
 - Linear combination of those functions constitutes an adequate utility function!

Conclusion

- Covered Models for Economies
 - Fisher Model
 - Exchange economies

Definition of Equilibria
 + Overview on means for computing those
 + Complexity and Limitations

A potential application within the Insieme project

