1c

Mechanism Design

Bertram Felgenhauer

Computational Logic
Institute of Computer Science
University of Innsbruck

2011-01-14

Mechanism Design


http://cl-informatik.uibk.ac.at

@ Overview

Without Money

With Money

@ Summary

Bertram Felgenhauer (CL / ICS) Mechanism Design



Classical Mechanism Design

Design rules for
e elections
e auctions
e markets

e government policy
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Mechanism Design and Computer Science

Computer Science for Economics
e platforms for automatic trading

e traditional trading but with previously impractical mechanisms
= Electronic Market Design

Economics for Computer Science
e computing platforms controlled and used by independent parties

e scheduling, packet routing, etc.
= Algorithmic Mechanism Design
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Participants

Mechanism designer
e defines rules of the game
e objectives: maximise welfare, fairness, selfish, ...

e or implementation: given a function of the preferences, find a
mechanism such that the outcome matches that function.

Players
e are bound by the rules
e usually may opt out
e assumed to be selfish and rational

e preferences may differ between players
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Without Money

Outline

e Without Money
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Voting Methods - Setup

A — set of candidates

L — set of preferences (linear orders on A)

e n — number of participants

~<;i€ L — preference of participant /

F : L" — L — social welfare function

f:L" — A — social choice function

F or f are determined by the mechanism.
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e n — number of participants

~<;i€ L — preference of participant /

F : L" — L — social welfare function

f:L" — A — social choice function

F or f are determined by the mechanism.
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Objective of Design

Avoid strategic manipulation:

Definition

A social choice function f can be strategically manipulated if for some /,
<1,...,=p and <},

a="f(<1,...,<i,... <n) # (=<1,...,=<},...,<p) = b implies b <; a.
If f can not be strategically manipulated, it is called strategy-proof or
incentive compatible.

F is a dictatorship if it always picks the most preferred choice of a single
individual iz F(...,=<j,...) = maxg,(A).

Theorem (Gibbard-Satterthwaite)

If f is incentive compatible then f is a dictatorship.
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Properties of Social Welfare Functions

e unanimity:
F(=<,...,<)==<forall <e L
e independence of irrelevant alternatives:
For F(<1,...,<iy...,=<n) ==
and F(<1,...,=<},...,<n) =</,
ifa<jb < a<,/bthena<b < a<'b.
e dictatorship: i is a dictator for F if
F(<1ye ey =<iyeey=<n) ==

Theorem (Arrow's Theorem)

Let #A > 3, and F a social welfare function that is unanimous and
satisfies independence pf irrelevant alternatives. Then F is a dictatorship.

The Gibbard-Satterthwaite theorem follows from Arrow’s theorem.
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Proving Arrow’s Theorem 1/2

Let A={a,b,c,...},and <je {fa< b<c, b<c<a}.

a<1b=<1c
b<>c<sa c=<b
F a<3b<3c c

b<,c<,a
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Proving Arrow’s Theorem 1/2

Let A={a,b,c,...},and <je {fa< b<c, b<c<a}.

a<1b=<1c
b<>c<sa

Fl a<sb=sc c a<b<c

. b—<a—<c

: b<c=<a
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e a<;b <= a<jcimplesa<b < a<c.
¢ a<;b <= c<;dimpliesa<b < c<d.
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Proving Arrow’s Theorem 2/2

¢ a<;b <= c<;dimpliesa<b << c=<d.

There is some i such that

a<1b

a<ij_1b
F a<;b
b<iy1a

b=<,a
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Proving Arrow’s Theorem 2/2
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Proving Arrow’s Theorem 2/2

¢ a<;b <= c<;dimpliesa<b << c=<d.

There is some i such that

a,c
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Proving Arrow’s Theorem 2/2

¢ a<;b <= c<;dimpliesa<b << c=<d.

There is some i such that

a,c

a,c
a<jc | =a<c
a,c

a,c

e hence F(...,<j,...) =<,

e therefore, i is a dictator
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House Allocation

e N = H — set of agents and houses

A — set of allocations (injective functions N — H) (a; is the house
that agent 7 will live in)

L — set of preferences (linear orders on A)

<€ L — preference of participant /

F:Lx LN — [ — allocation mechanism

The initial allocation has a; = i.
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House Allocation (ctd.)

Basic assumption: i will only move to j if j > i.
Let A(S) be the set of allocations a such that a; = i whenever i & S.

Definition

S C N is a blocking coalition for a € A if there is an allocation z € A(S)
such that z; =; a; for all i € S and z; > a; for some / € S.

The objective is to find an allocation with no blocking coalition.
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House Allocation: Top Trading Cycle Algorithm

remove all participants who live in their most preferred house

for the remaining participants, consider the graph with edges from
each participant to the participant living in their most preferred
house.

for all cycles in the resulting graph, trade the houses such that each
participant ends up in his or her preferred house

repeat until there are no participants left.

The TTCA produces an allocation with no blocking coalition.
Furthermore any other allocation will have a blocking coalition.
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e A — set of alternatives
e n — number of participants
e V; C R? — domain of preferences

e v; € V; — valuation function (preference)

f: Vi x---xV,— A— social choice function
F(a) =3, vi(a) — social welfare
o pi: Vi x---xV,—> R — payment function

The utility of / with valuations v, ..., v, and outcome a is
Vi(a) - pi(vlv SRR) Vn)'
Players maximise their utility.

Bertram Felgenhauer (CL / ICS) Mechanism Design 16/22



e A — set of alternatives
e n — number of participants
e V; C R? — domain of preferences

e v; € V; — valuation function (preference)

f: Vi x---xV,— A— social choice function
F(a) =3, vi(a) — social welfare
o pi: Vi x---xV,—> R — payment function

The utility of / with valuations v, ..., v, and outcome a is

Vi(a) - pi(vlv RN Vn)'
Players maximise their utility.

Example: Auction

Bertram Felgenhauer (CL / ICS) Mechanism Design 16/22



e again we can define incentive-compatibility
prescribed strategy 4+ Nash equilibrium

e money allows to quantify preferences
e optimise social welfare: Vickrey-Clarke-Groves mechanisms
e.g. Vickrey Second Price auction

e general question: Which social choice functions can be implemented
in an incentive compatible way?
Answer: Weak Monotonicity. (Whenever the outcome changes from
a to b when player i changes his or her preferences, it must be
because v/(b) — v/(a) > vj(b) — vi(a).)
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Summary

e many negative results for mechanism without money. Exceptions:
e elections with 2 outcomes
e house allocation
e (not covered) single parameter domains
e money helps
e restricts preferences
o Vickrey-Clarke-Groves mechanisms for maximising social welfare.
e incentive-compatibility is a very strong requirement.
= try to relax it.
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Final example: Dividing Cake

Problem

Given a cake and n people, find a mechanism that divides it fairly among
people, i.e. such that everybody gets at least % of the cake.

Assumptions:
e two people may not value the same parts of the cake the same way
e cake values are monotonic: more cake is better
e and continuous: cake can be divided arbitrarily

e model: divide a rectangle using only horizontal cuts
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Dividing Cake

Solution based on auction

We use an arbiter.

Each player, privately, shows the arbiter how to cut the top 1/n off
the cake.

The arbiter cuts the smallest such piece, and gives it to the player
who proposed that cut.
(Vickrey variant: Take the second smallest cut.)

Repeat with n — 1 remaining players.

This mechanism is fair in the following sense:
Any honest player will end up with at least % of the cake.
It is not strategy-proof (think cherries).
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Application
e to apply money based mechanisms define currencies

e bandwidth, transfer volume
e CPU time

o look for weaker implementation concepts, like approximately
optimising social welfare.

More theory
e incomplete information

e Bayesian-Nash implementation: Obtain optimal expected outcome.
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Application
e to apply money based mechanisms define currencies

e bandwidth, transfer volume
e CPU time

o look for weaker implementation concepts, like approximately
optimising social welfare.

More theory
e incomplete information

e Bayesian-Nash implementation: Obtain optimal expected outcome.
Thank you!
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