
OLCmputational
gic

Mechanism Design

Bertram Felgenhauer

Computational Logic
Institute of Computer Science

University of Innsbruck

2011-01-14

Bertram Felgenhauer (CL / ICS) Mechanism Design 1/22

http://cl-informatik.uibk.ac.at


Outline

Overview

Without Money

With Money

Summary

Bertram Felgenhauer (CL / ICS) Mechanism Design 2/22



Overview

Classical Mechanism Design

Design rules for

• elections

• auctions

• markets

• government policy

Bertram Felgenhauer (CL / ICS) Mechanism Design 3/22



Overview

Mechanism Design and Computer Science

Computer Science for Economics

• platforms for automatic trading

• traditional trading but with previously impractical mechanisms
⇒ Electronic Market Design

Economics for Computer Science

• computing platforms controlled and used by independent parties

• scheduling, packet routing, etc.
⇒ Algorithmic Mechanism Design

Bertram Felgenhauer (CL / ICS) Mechanism Design 4/22



Overview

Participants

Mechanism designer

• defines rules of the game

• objectives: maximise welfare, fairness, selfish, . . .

• or implementation: given a function of the preferences, find a
mechanism such that the outcome matches that function.

Players

• are bound by the rules

• usually may opt out

• assumed to be selfish and rational

• preferences may differ between players

Bertram Felgenhauer (CL / ICS) Mechanism Design 5/22



Without Money

Outline

Overview

Without Money

With Money

Summary

Bertram Felgenhauer (CL / ICS) Mechanism Design 6/22



Without Money

Voting Methods - Setup

• A — set of candidates

• L — set of preferences (linear orders on A)

• n — number of participants

• ≺i∈ L — preference of participant i

• F : Ln → L — social welfare function

• f : Ln → A — social choice function

F or f are determined by the mechanism.

Example: Voting

Bertram Felgenhauer (CL / ICS) Mechanism Design 7/22



Without Money

Voting Methods - Setup

• A — set of candidates

• L — set of preferences (linear orders on A)

• n — number of participants

• ≺i∈ L — preference of participant i

• F : Ln → L — social welfare function

• f : Ln → A — social choice function

F or f are determined by the mechanism.

Example: Voting

Bertram Felgenhauer (CL / ICS) Mechanism Design 7/22



Without Money

Voting Methods - Setup

• A — set of candidates

• L — set of preferences (linear orders on A)

• n — number of participants

• ≺i∈ L — preference of participant i

• F : Ln → L — social welfare function

• f : Ln → A — social choice function

F or f are determined by the mechanism.

Example: Auction

Bertram Felgenhauer (CL / ICS) Mechanism Design 7/22



Without Money

Objective of Design

Avoid strategic manipulation:

Definition

A social choice function f can be strategically manipulated if for some i ,
≺1, . . . ,≺n and ≺′i ,
a = f (≺1, . . . ,≺i , . . . ≺n) 6= f (≺1, . . . ,≺′i , . . . ,≺n) = b implies b ≺i a.
If f can not be strategically manipulated, it is called strategy-proof or
incentive compatible.

F is a dictatorship if it always picks the most preferred choice of a single
individual i : F (. . . ,≺i , . . .) = max≺i (A).

Theorem (Gibbard-Satterthwaite)

If f is incentive compatible then f is a dictatorship.

Bertram Felgenhauer (CL / ICS) Mechanism Design 8/22



Without Money

Properties of Social Welfare Functions

• unanimity:
F (≺, . . . ,≺) =≺ for all ≺∈ L

• independence of irrelevant alternatives:
For F (≺1, . . . ,≺i , . . . ,≺n) =≺
and F (≺1, . . . ,≺′i , . . . ,≺n) =≺′,
if a ≺i b ⇐⇒ a ≺′i b then a ≺ b ⇐⇒ a ≺′ b.

• dictatorship: i is a dictator for F if
F (≺1, . . . ,≺i , . . . ,≺n) =≺i .

Theorem (Arrow’s Theorem)

Let #A ≥ 3, and F a social welfare function that is unanimous and
satisfies independence pf irrelevant alternatives. Then F is a dictatorship.

The Gibbard-Satterthwaite theorem follows from Arrow’s theorem.

Bertram Felgenhauer (CL / ICS) Mechanism Design 9/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 b ≺1 c
b ≺2 c ≺2 a
a ≺3 b ≺3 c

...
b ≺n c ≺n a

 ∈


c ≺ b

a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 b ≺1 c
b ≺2 c ≺2 a
a ≺3 b ≺3 c

...
b ≺n c ≺n a

 ∈


c ≺ b

a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 b ≺1 c
b ≺2 c ≺2 a
a ≺3 b ≺3 c

...
b ≺n c ≺n a

 ∈


c ≺ b
a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 b ≺1 c
b ≺2 c ≺2 a
a ≺3 b ≺3 c

...
b ≺n c ≺n a

 ∈


c ≺ b
a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 c ≺1 b
c ≺2 b ≺2 a
a ≺3 c ≺3 b

...
c ≺n b ≺n a

 ∈


c ≺ b
a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 c ≺1 b
c ≺2 b ≺2 a
a ≺3 c ≺3 b

...
c ≺n b ≺n a

 ∈


c ≺ b
a ≺ c ≺ b
b ≶ a ≶ c
c ≺ b ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 b ≺1 c
b ≺2 c ≺2 a
a ≺3 b ≺3 c

...
b ≺n c ≺n a

 ∈


c ≺ b
a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a



• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 1/2

Let A = {a, b, c , . . .}, and ≺i∈ {a < b < c , b < c < a}.

F


a ≺1 b ≺1 c
b ≺2 c ≺2 a
a ≺3 b ≺3 c

...
b ≺n c ≺n a

 ∈


c ≺ b
a ≺ b ≺ c
b ≺ a ≺ c
b ≺ c ≺ a


• a ≺i b ⇐⇒ a ≺i c implies a ≺ b ⇐⇒ a ≺ c .

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

Bertram Felgenhauer (CL / ICS) Mechanism Design 10/22



Without Money

Proving Arrow’s Theorem 2/2

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

There is some i such that

F



a ≺1 b
...

a ≺i−1 b
a ≺i b

b ≺i+1 a
...

b ≺n a


= a ≺ b F



a ≺1 b
...

a ≺i−1 b
b ≺i a

b ≺i+1 a
...

b ≺n a


= b ≺ a

• hence F (. . . ,≺i , . . .) =≺i .

• therefore, i is a dictator

Bertram Felgenhauer (CL / ICS) Mechanism Design 11/22



Without Money

Proving Arrow’s Theorem 2/2

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

There is some i such that

F



a ≺1 b
...

a ≺i−1 b
a ≺i b

b ≺i+1 a
...

b ≺n a


= a ≺ b F



c ≺1 b
...

c ≺i−1 b
b ≺i c

b ≺i+1 c
...

b ≺n c


= b ≺ c

• hence F (. . . ,≺i , . . .) =≺i .

• therefore, i is a dictator

Bertram Felgenhauer (CL / ICS) Mechanism Design 11/22



Without Money

Proving Arrow’s Theorem 2/2

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

There is some i such that

F



a, c ≺1 b
...

a, c ≺i−1 b
a ≺i b ≺i c
b ≺i+1 a, c

...
b ≺n a, c


= a ≺ b ≺ c

• hence F (. . . ,≺i , . . .) =≺i .

• therefore, i is a dictator

Bertram Felgenhauer (CL / ICS) Mechanism Design 11/22



Without Money

Proving Arrow’s Theorem 2/2

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

There is some i such that

F



a, c
...

a, c
a ≺i c

a, c
...

a, c


= a ≺ c

• hence F (. . . ,≺i , . . .) =≺i .

• therefore, i is a dictator

Bertram Felgenhauer (CL / ICS) Mechanism Design 11/22



Without Money

Proving Arrow’s Theorem 2/2

• a ≺i b ⇐⇒ c ≺i d implies a ≺ b ⇐⇒ c ≺ d .

There is some i such that

F



a, c
...

a, c
a ≺i c

a, c
...

a, c


= a ≺ c

• hence F (. . . ,≺i , . . .) =≺i .

• therefore, i is a dictator

Bertram Felgenhauer (CL / ICS) Mechanism Design 11/22



Without Money

House Allocation

• N = H — set of agents and houses

• A — set of allocations (injective functions N → H) (ai is the house
that agent i will live in)

• L — set of preferences (linear orders on A)

• ≺i∈ L — preference of participant i

• F : L× LN → L — allocation mechanism

The initial allocation has ai = i .

Bertram Felgenhauer (CL / ICS) Mechanism Design 12/22



Without Money

House Allocation (ctd.)

Basic assumption: i will only move to j if j �i i .
Let A(S) be the set of allocations a such that ai = i whenever i 6∈ S .

Definition

S ⊆ N is a blocking coalition for a ∈ A if there is an allocation z ∈ A(S)
such that zi �i ai for all i ∈ S and zi � ai for some i ∈ S .

The objective is to find an allocation with no blocking coalition.

Bertram Felgenhauer (CL / ICS) Mechanism Design 13/22



Without Money

House Allocation: Top Trading Cycle Algorithm

1 remove all participants who live in their most preferred house

2 for the remaining participants, consider the graph with edges from
each participant to the participant living in their most preferred
house.

3 for all cycles in the resulting graph, trade the houses such that each
participant ends up in his or her preferred house

4 repeat until there are no participants left.

Theorem

The TTCA produces an allocation with no blocking coalition.
Furthermore any other allocation will have a blocking coalition.

Bertram Felgenhauer (CL / ICS) Mechanism Design 14/22



With Money

Outline

Overview

Without Money

With Money

Summary

Bertram Felgenhauer (CL / ICS) Mechanism Design 15/22



With Money

Setup

• A — set of alternatives

• n — number of participants

• Vi ⊆ RA — domain of preferences

• vi ∈ Vi — valuation function (preference)

• f : V1 × · · · × Vn → A — social choice function

• F (a) =
∑

i vi (a) — social welfare

• pi : V1 × · · · × Vn → R — payment function

The utility of i with valuations v1, . . . , vn and outcome a is
vi (a)− pi (v1, . . . , vn).
Players maximise their utility.

Example: Auction

Bertram Felgenhauer (CL / ICS) Mechanism Design 16/22



With Money

Setup

• A — set of alternatives

• n — number of participants

• Vi ⊆ RA — domain of preferences

• vi ∈ Vi — valuation function (preference)

• f : V1 × · · · × Vn → A — social choice function

• F (a) =
∑

i vi (a) — social welfare

• pi : V1 × · · · × Vn → R — payment function

The utility of i with valuations v1, . . . , vn and outcome a is
vi (a)− pi (v1, . . . , vn).
Players maximise their utility.

Example: Auction

Bertram Felgenhauer (CL / ICS) Mechanism Design 16/22



With Money

Results

• again we can define incentive-compatibility
prescribed strategy + Nash equilibrium

• money allows to quantify preferences

• optimise social welfare: Vickrey-Clarke-Groves mechanisms
e.g. Vickrey Second Price auction

• general question: Which social choice functions can be implemented
in an incentive compatible way?
Answer: Weak Monotonicity. (Whenever the outcome changes from
a to b when player i changes his or her preferences, it must be
because v ′i (b)− v ′i (a) ≥ vi (b)− vi (a).)

• . . .

Bertram Felgenhauer (CL / ICS) Mechanism Design 17/22



Summary

Outline

Overview

Without Money

With Money

Summary

Bertram Felgenhauer (CL / ICS) Mechanism Design 18/22



Summary

Summary

• many negative results for mechanism without money. Exceptions:
• elections with 2 outcomes
• house allocation
• (not covered) single parameter domains

• money helps
• restricts preferences
• Vickrey-Clarke-Groves mechanisms for maximising social welfare.

• incentive-compatibility is a very strong requirement.
⇒ try to relax it.

Bertram Felgenhauer (CL / ICS) Mechanism Design 19/22



Summary

Final example: Dividing Cake

Problem

Given a cake and n people, find a mechanism that divides it fairly among
people, i.e. such that everybody gets at least 1

n of the cake.

Assumptions:

• two people may not value the same parts of the cake the same way

• cake values are monotonic: more cake is better

• and continuous: cake can be divided arbitrarily

• model: divide a rectangle using only horizontal cuts

Bertram Felgenhauer (CL / ICS) Mechanism Design 20/22



Summary

Dividing Cake

Solution based on auction

We use an arbiter.

1 Each player, privately, shows the arbiter how to cut the top 1/n off
the cake.

2 The arbiter cuts the smallest such piece, and gives it to the player
who proposed that cut.
(Vickrey variant: Take the second smallest cut.)

3 Repeat with n − 1 remaining players.

This mechanism is fair in the following sense:
Any honest player will end up with at least 1

n of the cake.
It is not strategy-proof (think cherries).

Bertram Felgenhauer (CL / ICS) Mechanism Design 21/22



Summary

Outlook

Application

• to apply money based mechanisms define currencies
• bandwidth, transfer volume
• CPU time

• look for weaker implementation concepts, like approximately
optimising social welfare.

More theory

• incomplete information

• Bayesian-Nash implementation: Obtain optimal expected outcome.

Thank you!

Bertram Felgenhauer (CL / ICS) Mechanism Design 22/22



Summary

Outlook

Application

• to apply money based mechanisms define currencies
• bandwidth, transfer volume
• CPU time

• look for weaker implementation concepts, like approximately
optimising social welfare.

More theory

• incomplete information

• Bayesian-Nash implementation: Obtain optimal expected outcome.

Thank you!

Bertram Felgenhauer (CL / ICS) Mechanism Design 22/22


	Overview
	Without Money
	With Money
	Summary

