
Chapter 2

Deterministic Models:
Preliminaries

2.1 Framework and Notation . 13
2.2 Examples . 20
2.3 Classes of Schedules . 21
2.4 Complexity Hierarchy . 26

Over the last fifty years a considerable amount of research effort has been fo-
cused on deterministic scheduling. The number and variety of models considered
is astounding. During this time a notation has evolved that succinctly captures
the structure of many (but for sure not all) deterministic models that have been
considered in the literature.

The first section in this chapter presents an adapted version of this notation.
The second section contains a number of examples and describes some of the
shortcomings of the framework and notation. The third section describes sev-
eral classes of schedules. A class of schedules is typically characterized by the
freedom the scheduler has in the decision-making process. The last section dis-
cusses the complexity of the scheduling problems introduced in the first section.
This last section can be used, together with Appendixes D and E, to classify
scheduling problems according to their complexity.

2.1 Framework and Notation

In all the scheduling problems considered the number of jobs and the number
of machines are assumed to be finite. The number of jobs is denoted by n and
the number of machines by m. Usually, the subscript j refers to a job while the
subscript i refers to a machine. If a job requires a number of processing steps
or operations, then the pair (i, j) refers to the processing step or operation of
job j on machine i. The following pieces of data are associated with job j.

13M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4
c© Springer Science+Business Media, LLC 2008

2,

14 2 Deterministic Models: Preliminaries

Processing time (pij) The pij represents the processing time of job j on
machine i. The subscript i is omitted if the processing time of job j does not
depend on the machine or if job j is only to be processed on one given machine.

Release date (rj) The release date rj of job j may also be referred to as
the ready date. It is the time the job arrives at the system, i.e., the earliest time
at which job j can start its processing.

Due date (dj) The due date dj of job j represents the committed shipping or
completion date (i.e., the date the job is promised to the customer). Completion
of a job after its due date is allowed, but then a penalty is incurred. When a
due date must be met it is referred to as a deadline and denoted by d̄j .

Weight (wj) The weight wj of job j is basically a priority factor, denoting
the importance of job j relative to the other jobs in the system. For example,
this weight may represent the actual cost of keeping the job in the system. This
cost could be a holding or inventory cost; it also could represent the amount of
value already added to the job.

A scheduling problem is described by a triplet α | β | γ. The α field describes
the machine environment and contains just one entry. The β field provides
details of processing characteristics and constraints and may contain no entry
at all, a single entry, or multiple entries. The γ field describes the objective to
be minimized and often contains a single entry.

The possible machine environments specified in the α field are:

Single machine (1) The case of a single machine is the simplest of all pos-
sible machine environments and is a special case of all other more complicated
machine environments.

Identical machines in parallel (Pm) There are m identical machines in
parallel. Job j requires a single operation and may be processed on any one of
the m machines or on any one that belongs to a given subset. If job j cannot
be processed on just any machine, but only on any one belonging to a specific
subset Mj, then the entry Mj appears in the β field.

Machines in parallel with different speeds (Qm) There are m machines
in parallel with different speeds. The speed of machine i is denoted by vi. The
time pij that job j spends on machine i is equal to pj/vi (assuming job j receives
all its processing from machine i). This environment is referred to as uniform
machines. If all machines have the same speed, i.e., vi = 1 for all i and pij = pj ,
then the environment is identical to the previous one.

Unrelated machines in parallel (Rm) This environment is a further
generalization of the previous one. There are m different machines in parallel.
Machine i can process job j at speed vij . The time pij that job j spends on
machine i is equal to pj/vij (again assuming job j receives all its processing
from machine i). If the speeds of the machines are independent of the jobs, i.e.,
vij = vi for all i and j, then the environment is identical to the previous one.

2.1 Framework and Notation 15

Flow shop (Fm) There are m machines in series. Each job has to be
processed on each one of the m machines. All jobs have to follow the same
route, i.e., they have to be processed first on machine 1, then on machine 2,
and so on. After completion on one machine a job joins the queue at the next
machine. Usually, all queues are assumed to operate under the First In First
Out (FIFO) discipline, that is, a job cannot ”pass” another while waiting in
a queue. If the FIFO discipline is in effect the flow shop is referred to as a
permutation flow shop and the β field includes the entry prmu.

Flexible flow shop (FFc) A flexible flow shop is a generalization of the flow
shop and the parallel machine environments. Instead of m machines in series
there are c stages in series with at each stage a number of identical machines in
parallel. Each job has to be processed first at stage 1, then at stage 2, and so on.
A stage functions as a bank of parallel machines; at each stage job j requires
processing on only one machine and any machine can do. The queues between
the various stages may or may not operate according to the First Come First
Served (FCFS) discipline. (Flexible flow shops have in the literature at times
also been referred to as hybrid flow shops and as multi-processor flow shops.)

Job shop (Jm) In a job shop with m machines each job has its own
predetermined route to follow. A distinction is made between job shops in which
each job visits each machine at most once and job shops in which a job may
visit each machine more than once. In the latter case the β-field contains the
entry rcrc for recirculation.

Flexible job shop (FJc) A flexible job shop is a generalization of the job
shop and the parallel machine environments. Instead of m machines in series
there are c work centers with at each work center a number of identical machines
in parallel. Each job has its own route to follow through the shop; job j requires
processing at each work center on only one machine and any machine can do.
If a job on its route through the shop may visit a work center more than once,
then the β-field contains the entry rcrc for recirculation.

Open shop (Om) There are m machines. Each job has to be processed
again on each one of the m machines. However, some of these processing times
may be zero. There are no restrictions with regard to the routing of each job
through the machine environment. The scheduler is allowed to determine a
route for each job and different jobs may have different routes.

The processing restrictions and constraints specified in the β field may in-
clude multiple entries. Possible entries in the β field are:

Release dates (rj) If this symbol appears in the β field, then job j cannot
start its processing before its release date rj . If rj does not appear in the β
field, the processing of job j may start at any time. In contrast to release dates,
due dates are not specified in this field. The type of objective function gives
sufficient indication whether or not there are due dates.

16 2 Deterministic Models: Preliminaries

Preemptions (prmp) Preemptions imply that it is not necessary to keep a
job on a machine, once started, until its completion. The scheduler is allowed
to interrupt the processing of a job (preempt) at any point in time and put a
different job on the machine instead. The amount of processing a preempted job
already has received is not lost. When a preempted job is afterwards put back on
the machine (or on another machine in the case of parallel machines), it only
needs the machine for its remaining processing time. When preemptions are
allowed prmp is included in the β field; when prmp is not included, preemptions
are not allowed.

Precedence constraints (prec) Precedence constraints may appear in a
single machine or in a parallel machine environment, requiring that one or
more jobs may have to be completed before another job is allowed to start its
processing. There are several special forms of precedence constraints: if each
job has at most one predecessor and at most one successor, the constraints are
referred to as chains. If each job has at most one successor, the constraints are
referred to as an intree. If each job has at most one predecessor the constraints
are referred to as an outtree. If no prec appears in the β field, the jobs are not
subject to precedence constraints.

Sequence dependent setup times (sjk) The sjk represents the sequence
dependent setup time that is incurred between the processing of jobs j and k;
s0k denotes the setup time for job k if job k is first in the sequence and sj0 the
clean-up time after job j if job j is last in the sequence (of course, s0k and sj0

may be zero). If the setup time between jobs j and k depends on the machine,
then the subscript i is included, i.e., sijk . If no sjk appears in the β field, all
setup times are assumed to be 0 or sequence independent, in which case they
are simply included in the processing times.

Job families (fmls) The n jobs belong in this case to F different job families.
Jobs from the same family may have different processing times, but they can
be processed on a machine one after another without requiring any setup in
between. However, if the machine switches over from one family to another, say
from family g to family h, then a setup is required. If this setup time depends
on both families g and h and is sequence dependent, then it is denoted by sgh.
If this setup time depends only on the family about to start, i.e., family h,
then it is denoted by sh. If it does not depend on either family, it is denoted
by s.

Batch processing (batch(b)) A machine may be able to process a number of
jobs, say b, simultaneously; that is, it can process a batch of up to b jobs at the
same time. The processing times of the jobs in a batch may not be all the same
and the entire batch is finished only when the last job of the batch has been
completed, implying that the completion time of the entire batch is determined
by the job with the longest processing time. If b = 1, then the problem reduces to
a conventional scheduling environment. Another special case that is of interest
is b = ∞, i.e., there is no limit on the number of jobs the machine can handle
at any time.

2.1 Framework and Notation 17

Breakdowns (brkdwn) Machine breakdowns imply that a machine may not
be continuously available. The periods that a machine is not available are, in
this part of the book, assumed to be fixed (e.g., due to shifts or scheduled main-
tenance). If there are a number of identical machines in parallel, the number of
machines available at any point in time is a function of time, i.e., m(t). Machine
breakdowns are at times also referred to as machine availability constraints.

Machine eligibility restrictions (Mj) The Mj symbol may appear in the
β field when the machine environment is m machines in parallel (Pm). When
the Mj is present, not all m machines are capable of processing job j. Set Mj

denotes the set of machines that can process job j. If the β field does not contain
Mj , job j may be processed on any one of the m machines.

Permutation (prmu) A constraint that may appear in the flow shop envi-
ronment is that the queues in front of each machine operate according to the
First In First Out (FIFO) discipline. This implies that the order (or permuta-
tion) in which the jobs go through the first machine is maintained throughout
the system.

Blocking (block) Blocking is a phenomenon that may occur in flow shops.
If a flow shop has a limited buffer in between two successive machines, then it
may happen that when the buffer is full the upstream machine is not allowed to
release a completed job. Blocking implies that the completed job has to remain
on the upstream machine preventing (i.e., blocking) that machine from working
on the next job. The most common occurrence of blocking that is considered in
this book is the case with zero buffers in between any two successive machines.
In this case a job that has completed its processing on a given machine cannot
leave the machine if the preceding job has not yet completed its processing on
the next machine; thus, the blocked job also prevents (or blocks) the next job
from starting its processing on the given machine. In the models with blocking
that are considered in subsequent chapters the assumption is made that the
machines operate according to FIFO. That is, block implies prmu.

No-wait (nwt) The no-wait requirement is another phenomenon that may
occur in flow shops. Jobs are not allowed to wait between two successive ma-
chines. This implies that the starting time of a job at the first machine has to
be delayed to ensure that the job can go through the flow shop without having
to wait for any machine. An example of such an operation is a steel rolling mill
in which a slab of steel is not allowed to wait as it would cool off during a wait.
It is clear that under no-wait the machines also operate according to the FIFO
discipline.

Recirculation (rcrc) Recirculation may occur in a job shop or flexible job
shop when a job may visit a machine or work center more than once.

Any other entry that may appear in the β field is self explanatory. For exam-
ple, pj = p implies that all processing times are equal and dj = d implies that
all due dates are equal. As stated before, due dates, in contrast to release dates,
are usually not explicitly specified in this field; the type of objective function
gives sufficient indication whether or not the jobs have due dates.

