## **Game Theory and Planning**

**Selected Topics** 

Radu Prodan, Georg Moser

19 10 2010

R. Prodan, Game Theory and Planning

## **Topics Overview**

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

18.10.2010

R. Prodan, Game Theory and Planning

#### **Topics Overview**

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

18.10.2010

R. Prodan, Game Theory and Planning

# Learning, Regret Minimisation, and Equilibria

- Repeatedly making decisions in an uncertain environment against opponents with an unknown strategy
- M players, set of N actions
  - O What route to drive to work?
  - o Rock, scissors, paper
- Design adaptive algorithms
- Regret analysis (against a simple alternative policy)
  - o External regret (combining expert advice)
  - o Internal or swap regret
- Full versus partial information model
- Models for approaching Nash equilibrium when minimising external regret
- Price of anarchy when using selfish adaptive behaviour

18.10.2010

R. Prodan, Game Theory and Planning

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

R. Prodan, Game Theory and Planning

## **Economy Models**

- Market equilibrium problem
  - Find a set of prices and allocation of goods to economic agents such that each agent maximises his utility subject to budget constraints and the market clears
- Exchange economy model (Arrow and Debreu, 1954)
  - o m traders, n goods
  - Concave utility function:  $u_i: R_+^n \to R_+, i \in [1..m]$ Non-satiable:  $\forall x \in R_+^n, \exists y \in R_+^n : u_i(y) > u_i(x)$

✓ Monotone:  $u_i(y) \ge u_i(x), y \ge x$ 

- o Initial goods endowment:  $\mathbf{w}_i = (\mathbf{w}_{i1},...,\mathbf{w}_{in}) \in \mathbb{R}^m_+, \exists j \in [1..n] : \mathbf{w}_{ij} > 0, \forall i \in [1..m]$
- Find an equilibrium vector of prices:  $\pi_i = (\pi_i, ..., \pi_n) \in \mathbb{R}_+^n$  and allocation of goods  $x_i = (x_{i1}, ..., x_{in})$  such that  $u_i(x)$  is maximised:

$$\max_{m} w_{i}(x) : \forall i \in [1, m]$$

Fisher model

- Buyers have fixed money endowment e,
- Each good j is sold by one trader in quantity q.

## **Topics Overview**

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- **Graphical games**
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

## **Graphical Games**

- Classical multiplayer game (in normal form)
  - N players
  - o Binary action space (pure strategies):  $a_i \in \{0, 1\}, \forall i \in [1..N]$
  - Mixed strategy: probability  $p_i \in [0,1]$  to play 0
  - Payoff of player  $i: M_i: \{0, 1\}^N \rightarrow [0,1]$
  - ο Approximate ε-Nash equilibrium is a mixed strategy:  $p = \Phi_1, ..., p_N$

$$M_i + \varepsilon \ge M_i + \varepsilon \ge M_i = [0,1], \forall i \in [1..N]$$

- o  $p_i$  is an  $\varepsilon$ -best response to the rest of  $\overline{p}$
- Graph theoretic model for multiplayer games
- $\circ$  G = (N, Edges)
- o  $N_i \subseteq \{1, ..., N\}$  is the neighbourhood of player iEdges = (i,j):  $\forall i \in [1..N], \forall j \in N$
- Graphical game: (G, ∪M'<sub>i</sub>)
- o Local game matrix  $M_i'$  is the projection of  $M_i$  onto  $N_i$

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

R. Prodan, Game Theory and Planning

## **Mechanism Design**

- Subfield of economic theory with an engineering perspective
- Engineer of games rules so that the outcome of the games is optimal
- Design mechanisms in terms of social choices assuming rational participants
  - o Elections, market, auctions, governmental policies
- Algorithmic mechanism design (economics for computer science)
  - o Internet operated by parties with different goals and preferences
  - o Routing of messages
  - o Scheduling of tasks
- Electronic market design (computer science for economics)
- Voting methods
- Majority vote, strategic vote
- Condorcet's paradox
- (2)  $b \succ_2 c \succ_2 a$
- Social welfare function o Social choice function
- (3)  $c \succ_{\scriptscriptstyle 3} a \succ_{\scriptscriptstyle 3} b$

- Mechanisms with and without money

### **Topics Overview**

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

#### **Combinatorial Auctions**

- *m* indivisible items
- Concurrently auctioned among *n* bidders
- Valuation function v(S) for each subset S
  - Monotone:  $S \subseteq T \Rightarrow v(S) \le v(T)$  Normalised:  $v(\emptyset) = 0$
  - o Private to the bidder
- $S \cap T = \emptyset$ 
  - Complements: v(S ∪ T) > v(S) + v(T)
    Substitutes: v(S ∪ T) < v(S) + v(T)</li>
- Item allocation among bidders:  $S_1, ..., S_n$ o  $S_i \cap S_j = \emptyset, \forall i \neq j$
- Social welfare:  $\sum_{i=1}^{n} v_i \mathbf{q}_i$

Computational complexity, representation and communication, strategies

R. Prodan, Game Theory and Planning

3

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

18.10.2010

R. Prodan, Game Theory and Planning

## **Routing Games**

- Route traffic in large communication networks with no central authority, such as the Internet
- Networks with source routing
  - o Distributed shortest path routing
- Non-atomic selfish routing
  - Each commodity is a large population of individuals controlling a small amount of traffic
- Atomic selfish routing
  - o Each commodity is a single player controlling a larger amount of traffic on a single path

18.10.2010

R. Prodan, Game Theory and Planning

#### **Topics Overview**

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

18.10.2010

R. Prodan, Game Theory and Planning

#### **Selfish Load Balancing**

- Makespan scheduling on uniformly related machines
  - $\circ$  [m] = { 1, ..., m } set of machines with speeds  $s_1$ , ...,  $s_m$
  - $\circ$  [n] = { 1, ..., n } set of tasks with weights  $w_1$ , ...,  $w_n$
  - Allocation:  $A: [n] \rightarrow [m]$
  - Load of machine  $j \in [m]$ :  $I_j = \sum_{\substack{i \in [n] \\ i = A(n)}} \frac{w_i}{s_j}$
  - o Goal: minimise the maximum load (makespan)
- Makespan scheduling on identical machines
  o s<sub>1</sub> = ... = s<sub>m</sub> = 1
- Multiple selfish users in Internet assigning tasks to machines

18.10.2010

R. Prodan, Game Theory and Planning

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

R. Prodan, Game Theory and Plann

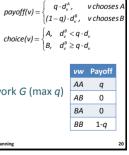
## **Price of Anarchy and Design of Scalable Resource Allocation Mechanisms**

- R users compete for sharing an infinitely divisible resource of capacity C > 0
- Each user  $r \in [1..R]$  gives a bid  $w_r \ge 0$  to the resource manager
- Given the vector  $w = (w_1, ..., w_R)$ , resource manager selects an allocation
- Utility  $U_r(d_r)$  of user  $r \in [1..R]$  is concave, strictly increasing, continuous, ...
- No price discrimination: each user is charged the same price  $\mu \!\!>\!\! 0$ 
  - $max\left\{\sum_{r}^{R}U_{r}\P_{r}\right\}$

- Proportional allocation mechanism
- Full efficiency for users as price takers
- Price of anarchy for users as price anticipators
- Implication of price discrimination (per user)

### **Topics Overview**

- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions


## **Cascading Behaviour in Networks**

- Social networks
- New ideas and behaviours spread through a population
  - o Religious beliefs, political movements, technological innovations, new products, celebrities
- G = (V, E)
  - V are individuals
  - $(v, w) \in E$  are friends

  - o Two behaviours: A (old) and B (new)
  - o  $d_v$  = degree of node v

$$d_{v} = d_{v}^{A} + d_{v}^{B}$$

- Contagious threshold of social network G (max q)
- Progressive versus non-progressive
- Influential nodes



- Learning, regret minimisation, and equilibria
- Computation of market equilibria by convex programming
- Graphical games
- Mechanism design
- Combinatorial auctions
- Routing games
- Selfish load balancing
- Price of anarchy and the design of scalable resource allocation mechanisms
- Cascading behaviour in networks: algorithmic and economic issues
- Sponsored search auctions

10 10 2010

R. Prodan, Game Theory and Planning

## **Sponsored Search Auctions**

- Sponsoring search
- Advertisers bid for placement in an auction-style format
- o Keywords, bids, budget (daily, weekly)
- o Pay-per-click
- n bidders, m<n slots</p>
- lacksquare Estimated click through rate  $lpha_{\it ij}$ 
  - o Probability that a user clicks on the *i*<sup>th</sup> the slot occupied by bidder *j*
  - $\alpha_{ij} \ge \alpha_{i+1,j}, \forall i \in [1..m-1]$
  - Weight  $w_i$  assigned to advertiser j as a relevance or quality metric
  - Rank by bid:  $w_i = 1$
  - Rank by revenue:  $w_j = \alpha_{1j}$
- Advertiser score:  $s_j = w_j \cdot b_j$
- Generalised second price auction: agent on slot j pays  $\frac{s_{j+1}}{w}$ .
- Static and dynamic aspects

2010

R. Prodan, Game Theory and Planning