<text><text><text><text><text></text></text></text></text></text>	Summary First Lecture Definition • games in extensive form • games in strategic form • fully reduced normal form Example consider the following game $\frac{C_1 \frac{C_2}{x_2 y_2 z_2}}{\frac{C_1 x_2 y_2 z_2}{x_1 3,0 0,2 0,3}}$ $y_1 2,0 1,1 2,0$ $z_1 0,3 0,2 3,0$ the unique Nash equilibrium is (y_1, y_2) as it is the best-response to all other strategies
GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar) 1/3 Summary Summary	9 GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar) 20/39 Nash Equilibrium Randomised (or Mixed) Strategies
 Topics Learning, regret minimisation and equilibria Computation of market equilibria by convex programming Graphical games Mechanism design Combinatorial auctions Routing games Load balancing or job allocation schemes Price of anarchy and the design of scalable resource allocation mechanisms Cascading behaviour in networks: algorithmic and economic issues Sponsored search auctions 	let Z be a finite set, the probability distributions $\Delta(Z)$ over Z are defined as follows: $\Delta(Z) = \{q \colon Z \to \mathbb{R} \mid \sum_{y \in Z} q(y) = 1 \text{ and } \forall z \in Z \ q(z) \ge 0\}$ Definition let $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$ • a randomised strategy for player <i>i</i> , is a probability distribution $\Delta(C_i)$ over C_i • $c_i \in C_i$ is a pure strategy • a randomised strategy profile $\sigma \in \prod_{i \in N} \Delta(C_i)$ specifies a randomised strategy for every player

Nash Equilibrium	Nash Equilibrium
Definition let $\sigma \in \prod_{i \in N} \Delta(C_i)$, let $u_i(\sigma)$ denote the expected utility payoff for player <i>i</i> , when players choose strategies according to σ : $u_i(\sigma) = \sum_{c \in C} (\prod_{j \in N} \sigma_j(c_j)) u_i(c)$ for all $i \in N$ for $\tau_i \in \Delta(C_i)$, let (σ_{-i}, τ_i) denote the randomised strategy profile, where τ_i is substituted for σ_i , thus $u_i(\sigma_{-i}, \tau_i) = \sum_{c \in C} (\prod_{j \in N \setminus \{i\}} \sigma_j(c_j)) \tau_i(c_i) u_i(c)$ define $[c_i] \in \Delta(C_i)$ such that $[c_i](x) = \begin{cases} 1 & x = c_i \\ 0 & \text{otherwise} \end{cases}$	Nash Equilibrium $\forall Z \text{ and } \forall f: Z \to \mathbb{R}$, define $\operatorname{argmax}_{y \in Z} f(y) = \{y \in Z \mid f(y) = \max_{z \in Z} f(z)\}$ Definition (informal) • a best response of player <i>i</i> to a randomised strategy profile σ is a randomised strategy τ_i that maximises the expected utility $u(\sigma_{-i}, \tau_i)$ of player <i>i</i> • a (mixed) Nash equilibrium is a strategy profile σ such that all mixed strategies are best responses to each other Definition a randomised strategy profile σ is a (mixed) Nash equilibrium of Γ if \forall $i \in N$, and $\forall c_i \in C_i$ if $\sigma_i(c_i) > 0$, then $c_i \in \operatorname{argmax}_{d_i \in C_i} u_i(\sigma_{-i}, [d_i])$
GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar) 23/39	GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar) 24
Nash Equilibrium	Nash Equilibrium
Lemma • $\forall \sigma \in \prod_{i \in N} \Delta(C_i) \text{ and } \forall \text{ player } i$ $\max_{c_i \in C_i} u_i(\sigma_{-i}, [c_i]) = \max_{\tau_i \in \Delta(C_i)} u_i(\sigma_{-i}, \tau_i)$ • furthermore, $p_i \in \operatorname{argmax}_{\tau_i \in \Delta(C_i)} u_i(\sigma_{-i}, \tau_i)$ if and only if $p_i(c_i) = 0$ for every $c_i \notin \operatorname{argmax}_{\tau_i \in \Delta(C_i)} u_i(\sigma_{-i}, \tau_i)$	Existence of Nash Equilibrium Theorem given a finite game Γ in strategic form, there exists at least one (Nash) equilibrium in $\prod_{i \in N} \Delta(C_i)$
$V_{i} \in V_{i} \notin arg_{i} = arg_{i} = a_{c_{i} \in C_{i}} u_{i} (v_{-i}, v_{i})$	
the highest expected utility player i can get is independent of the fact whether player i used randomised strategies for herself	Example $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Definition	Pr = -0.5, 0.5 = 1, -1
a pure strategy profile $c \in C$ is a pure Nash equilibrium if for all $i \in N$, and every $d_i \in C_i$	<i>Pp</i> 0,0 0,0 no pure equilibrium exists 0,0 0,0

 $u_i(c) \ge u_i(c_{-i}, d_i)$

39

Jash Equilibrium	Nash Equilibrium
Definitionthe outcome of a game in Pareto efficient if there is no other outcome that would make all players better ofa game may have equilibria that are inefficient, and a game may have multiple equilibriaExample: Prisoner Dillema/Routing problem $\frac{C_1}{f_1}$ $\frac{f_2}{f_1}$ g_1 4,01,1the only equilibrium is ([g_1], [g_2]) which is inefficient	Example: Battle of the Sexes $\frac{C_1}{f_2} \frac{f_2}{f_2} \frac{s_2}{s_2}}{f_1}$ $\frac{f_2}{f_1} \frac{s_2}{3,1} \frac{s_2}{0,0}}{0,0}$ $s_1 = 0,0 = 1,3$ • the game as two pure equilibria $([f_1], [f_2]) = ([s_1], [s_2])$ • and one (inefficient) mixed equilibria $(0.75[f_1] + 0.25[s_1], 0.25[f_2] + 0.75[s_2])$ • the battle of sexes is an example of a coordination game • similar phenomena occur in routing games, which can be conceived as anti-coordination game
M,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar) 27/39	0 GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar) 28/ 2 Two Porcen Zero Sum Cames 28/
Two-Person Zero-Sum Games	Min-Max Theorem
Example $ \frac{C_{1}}{C_{1}} \qquad \frac{C_{2}}{M} \qquad F \\ \frac{Rr}{Rr} \qquad 0.0 \qquad 1, -1 \\ \frac{Rp}{Rr} \qquad 0.5, -0.5 \qquad 0, 0 \\ \frac{Pr}{Rr} \qquad -0.5, 0.5 \qquad 1, -1 \\ \frac{Pp}{Rr} \qquad 0, 0 \qquad 0, 0 $	Theorem (σ_1, σ_2) is an equilibrium of a finite two-person zero-sum game $\Gamma = (\{1, 2\}, C_1, C_2, u_1, -u_1)$ if and only if $\sigma_1 \in \operatorname{argmax}_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2)$ $\sigma_2 \in \operatorname{argmin}_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$
Observation $\forall c_1 \in \{Rr, Rp, Pr, Pp\} \forall c_2 \in \{M, F\}: u_1(c_1, c_2) = -u_2(c_1, c_2)$	furthermore if (σ_1, σ_2) an equilibrium of Γ , then $u_1(\sigma_1, \sigma_2) = \max_{\tau_1 \in \Delta(C_1)} \min_{\tau_2 \in \Delta(C_2)} u_1(\tau_1, \tau_2) = \min_{\tau_2 \in \Delta(C_2)} \max_{\tau_1 \in \Delta(C_1)} u_1(\tau_1, \tau_2)$
Definition a two-person zero-sum game Γ in strategic form is a game $\Gamma = (\{1,2\}, C_1, C_2, u_1, u_2), \forall c_1 \in C_1, \forall c_2 \in C_2: u_1(c_1, c_2) = -u_2(c_1, c_2)$	Observation without randomised strategies, the existence of an equilibrium cannot be guaranteed and the min-max theorem fail

wo-Person Zero-Sum Games	Computation of Nash Equilibrium
Example $ \frac{C_1}{Rr} = \frac{C_2}{0,0} = \frac{C_1}{1,-1} $ $ \frac{R_p}{R_p} = \frac{0.5,-0.5}{0,0} = 0.5, 0.5 $ $ \frac{P_r}{P_p} = 0,0 = 0,0 $	Example $\begin{array}{c c} C_{2} \\ \hline C_{1} & \hline x_{2} & y_{2} \\ \hline x_{1} & (3,3) & (3,2) \\ y_{1} & (2,2) & (5,6) \\ z_{1} & (0,3) & (6,1) \end{array}$
 allow only the pure strategies we obtain max min u₁(c₁, c₂) = max{0, 0, -0.5, 0} = 0 nin max u₁(c₁, c₂) = min{0.5, 1} = 0.5 ≠ 0 c₂∈{M,F} c₁∈{Rr,Rp,Pr,Pp} u₁(c₁, c₂) = min{0.5, 1} = 0.5 ≠ 0 Observation two-person zero-sum games and optimisation problems are closely linked 	$\Gamma \text{ is representable as two matrices } A, B$ $A = \begin{pmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{pmatrix}$ Notation $M \text{ denotes the set of } m \text{ pure strategies of player } 1$ $N \text{ denotes the set of } n \text{ pure strategies of player } 2$ $M = \{1, \dots, m\} \qquad N = \{m+1, \dots, m+n\}$ GM.RT (Institute of Computer Science & UI Game Theory and Planning (PhD seminar) 32/39
• let c be a pure strategy profile and $\sigma \in \prod_{i \in N} \Delta(C_i)$ a randomised strategy profile • using linear algebra notation, we write: $\sigma_i = \sum_{c_i \in C_i} \sigma(c_i)[c_i]$ • only the vector $x := (\sigma(c_{i1}), \dots, \sigma(c_{i C_i }))$ is important • we call x a mixed strategy Lemma let x, y be be mixed strategies, then x is best response to y iff $x_i > 0$ implies $(Ay)_i = u = \max\{(Ay)_k \mid k \in M\}$ $\forall i \in M$	Example in the battle of sexes the support of $([f_1], [f_2])$ is $\{f_1\} \times \{f_2\}$ and the support of $([s_1], [s_2])$ is $\{s_1\} \times \{s_2\}$ the support of $(0.75[f_1] + 0.25[s_1], 0.25[f_2] + 0.75[s_2])$ is $\{f_1, s_1\} \times \{f_2, s_2\}$ Definition a (two-player) game is non-degenerate if no mixed strategy of support size k has more than k pure best responses.
Definition the support of a mixed strategy x is the set $\prod_{i \in N} \{c_i \in C_i \mid x_i > 0\}$	Theorem for a Nash equilibrium (x, y) of a non-degenerated bimatrix game, x and y have support of equal size

Computation of Nash Equilibrium	Bayesian games
Equilibria by Support Enumeration Algorithm • INPUT: a non-degenerate bimatrix game • OUTPUT: all Nash equilibria	 Games with Incomplete Information a game has incomplete information if some players have private information before the game starts the initial private information is called the type of the player
Method 1 $\forall k \in \{1,, \min\{m, n\}\}$ 2 $\forall k$ -sized subsets (I, J) of M, N 3 solve the following equation $\sum_{i \in I} x_i b_{ij} = v \text{ for } j \in J \qquad \sum_{j \in J} a_{ij} y_j = u \text{ for } i \in I$ $\sum_{i \in I} x_i = 1 \qquad \sum_{j \in J} y_j = 1$ such that $x \ge 0$, $y \ge 0$ and the best response condition is fulfilled for x and y	Definition a Bayesian game is a tuple $\Gamma^b = (N, (C_i)_{i \in N}, (T_i)_{i \in N}, (p_i)_{i \in N}, (u_i)_{i \in N})$ such that 1 N is the set of players 2 C_i is the set of players 3 T_i is the set of types of player i 3 set $C = \prod_{i \in N} C_i$, $T = \prod_{i \in N} T_i$ 5 $p_i(\cdot t_i) \in \Delta(T_{-i})$ is the probability distribution over the types of the other players T_{-1} 6 for each $i: u_i: C \times T \to \mathbb{R}$ is the expected utility payoff
Bayesian games	Bayesian games
Strategies in Bayesian Games	Applications of Bayesian games: Auctions
Definition a strategy for player <i>i</i> in Γ^b is a function $f: T \to C$ Example consider bargaining game: player 1 is the seller, player two is the buyer • each player knows the value of the object to himself; assumes the value to the other is $\in [1, 100]$ with uniform probability • each player bids a number $\in [0, 100]$	 auctions are not really a new idea used by the Babylonians (500 BC) first Roman fire brigade offered to buy the burning house and only extinguished the fire if the offer was accepted after having killed Emperor Pertinax, the Prätorian Guard auctioned off the Roman Empire (193) Johann Wolfgang von Goethe sold a manuscript through a second-price auction (1797) biggest revenue yet was generated by the US FCC spectrum auctions (1994–2008)
• assume utility = monetary profit any Bayesian game is representable as strategic game by conceiving each type as a player	 Observation game theoretic analysis of first price auctions shows non-efficiency of this auction mechanism design aims at the design of auctions where Bayesian-Nash eq. is Pareto efficient

GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar)

37/39 GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar)

Bayesian games

Assignment of Topics

Topics

- 1 Learning, regret minimisation and equilibria
- 2 Computation of market equilibria by convex programming
- 3 Graphical games
- 4 Mechanism design
- **5** Combinatorial auctions
- 6 Routing games
- **7** Load balancing or job allocation schemes

GM,RT (Institute of Computer Science @ UI Game Theory and Planning (PhD seminar)

- 8 Price of anarchy and the design of scalable resource allocation mechanisms
- **9** Cascading behaviour in networks: algorithmic and economic issues
- **10** Sponsored search auctions

39/39