18.01.2011

Introduction to Scheduling

Radu Prodan
Institute of Computer Science
University of Innsbruck

18.01.2011 R. Prodan, Introduction to Scheduling 1

What is Scheduling?

= Decision making process that deals with allocation of
resources to tasks

o Processing units in a computing environment
o Routers (to handle packet traffic)

o Disk drives (I/0 scheduling)

o Printers (print spooler)

o Embedded systems

o

= Goal is to optimise one or more objectives
= A scheduling problem can be described by a triplet (o, 3, V)
o a describes the resource environment
o B describes the processing characteristics and constraints
o v describes the objective
o [Pinedo, Scheduling: Theory, Algorithms, and Systems, 1994]

18.01.2011 R. Prodan, Introduction to Scheduling 2

Resource Environments o

= Single machine

= |dentical machines in parallel

= Machines in parallel with different speeds
= Unrelated machines in parallel

= Flow shop

= Flexible flow shop
= Job shop

= Flexible job shop
= Open shop

18.01.2011 R. Prodan, Introduction to Scheduling

Processing Characteristics and Constraints

B

= Release dates

= Preemptions

= Precedence constraints (worflows)

= Sequence dependent setup times (file transfers)
= Job families

= Batch processing

= Breakdowns
= Machine eligibility restrictions

= Permutation (FIFO in flow shops)
= Blocking (in flow shops)

= Nowait (in flow shops)

= Recirculation (in job shops)

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

Objectives Functions y

= Makespan (execution time)
= Turnaround (completion time)
= Response time

= Throughput

= Waiting time

= Communication time

= Load balance

= Processor utilisation

= Reliability

= Energy

= Economic cost

18.01.2011 R. Prodan, Introduction to Scheduling

Agenda

Introduction

Parallel and distributed applications

Compiler construction

Operating systems

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

18.01.2011

Agenda

Introduction

Parallel and distributed applications
Compiler construction

Operating systems

R. Prodan, Introduction to Scheduling

Scheduling Problem

= Resource environment
o M unrelated machines in parallel

= Processing restrictions and constraints

o N tasks

o Independent (parameter studies)
o Workflow

Obijective function

o Execution time, ...

Prediction matrix

Machine

Task

o Objective function estimation for each task

18.01.2011

R. Prodan, Introduction to Scheduling

18.01.2011

Conventional Scheduling Architecture

User Application

|

Scheduler

/\

Grid/Cloud
environments
SMP Clusters
(Time-shared Allocation) (Space-shared Allocation)
18.01.2011 R. Prodan, Introduction to Scheduling 9

Local Resource Manager Local Resource Manager Local Resource Manager

Problem Complexity

= Structure dependent and

~ ~
. . . - @+@+
intradependent objectives [% 90
o Makespan (execution time) < ®
structure dependent structure independent
o) NP_compIete (U”man' 75) (e.g. execution time) (e.g. economic cost)
o O(MV') complexity
. SO
= Structure independent and non- “'foog“‘:
intradependent objectives /Oo\
. ol
o Cost (simple models) 90 X2 2280800
o Reliability — °
(e.:.l:execution time) (e.g. econor:lic cost)

o Energy consumption

18.01.2011 R. Prodan, Introduction to Scheduling

10

18.01.2011

1.00E+09
H 9.00E+08 +—=
* Expected Time to Compute g oo™ ooy
.) R®=0.9153
matrix _ Work £ rooene 1
=— 2 6.008+08
SpGEd iE 5.00E+08 +— R
MIPS S 4.00E+08 o
= g Jonee KJ - m
comp Clock _ freq @ 2.00E+08 1 = — =T = U5o
Data size % 1 ooes08 |2 X ...::. [%rVy === 4t
=— 0.00E+00
comm Bandwidth 0 5 10 15 20 25 30 35 40 45
Machine Size [Processors]
™ 1 1 H H * 8 Atoms, y = 83756(x-1)2 - BE+06(x-1) + 1IE+08 x 16 Atoms, y = 188062(x-1)2 - 9E+06(x-1) + 2E+08
U ncerta | ntlesl Inaccu raCIeSI 432 Atoms, y = 4E+08(x-1)-0.3935 064 Atoms, y = 9E+08(x-1)-0.4997 ‘
incomplete information, ... 1500
0 y = -0,0038x? + 21,359x + ZW o
Machine 1200 R=1
2 1000
o
w
O, 80
s /-4
ﬁ S 0
O
= 400 -/.'16
200 s
o
o 10 20 30 40 50 60 70
18.01.2011 R. Prodan, Introduction to Scheduling Problem Size [Atoms] 11

ETC Matrix

Gantt Chart

= The execution time plan v7ties (votaxs sue cae

Gantt Chart

™ RO

TR L T T T R T N . T
i x) v wn s, £y

T2 | T4 T6
S m2| 1|
L C
O
© 5 | 77
Timeline
18.01.2011 R. Prodan, Introduction to Scheduling 12

18.01.2011

18.01.2011

Independent Task Scheduling

= O(N-M) heuristics

o Minimum Execution Time (MET)

o Minimum Completion Time (MCT)

o Switching Algorithm (SA)

o K-Percent Best (K-PB)

o Opportunistic Load Balancing (OLB)
= O(N2-M) heuristics

o Min-min

o Min-max

o Sufferage

18.01.2011 R. Prodan, Introduction to Scheduling 13

Min-Min Heuristic — O(N?-M)

= Determine the MCT for all the tasks
= Schedule only the task with the minimum MCT and reconsider the rest

algorithm min-min(task_list, machine_list)
GanttChart=®
while task_list # ®
foreach task e task_list
(machine, time) = MCT(task, machine_list, GanttChart)
MCT_list = MCT_list U (task, machine, time)
end foreach
(task_s, machine_s) = miny;,, MCT_list
GanttChart = GanttChart U (task_s, machine_s)

task_list = task_list —task_s
end while ML |2]2]2
return GanttChart Mm2lz2l21|2 12
18.01.2011 R. Prodan, Introduction to Scheduling 14

Min-Max Algorithm — O(N2-M)

algorithm min-max(task_list, machine_list)
GanttChart=9®
while task_list # @
foreach task e task_list
(machine, time) = MCT(task, machine_list, GanttChart)
MCT_list = MCT_list U (task, machine, time)
end foreach
(task_s, machine_s) = max,;,o MCT_list
GanttChart = GanttChart U (task_s, machine_s)
task_list = task_list —task_s

end while MLj2]2]2]2]2]2
return GanttChart M2 12
18.01.2011 R. Prodan, Introduction to Scheduling 15

Sufferage Heuristic — O(N?-M)

algorithm sufferage(task_list, machine_list) Min-Min
GanttChart = @
while task_list # ®
foreach task e task_list 80
(machine, time) = MCT(task, machine_list, GanttChart) eo
(machine2, time2) = 2"_MCT(task, Grid, GanttChart) 4 I
MCT_list = MCT_list U (task, machine, time2 - time) 0l
end foreach o ‘ ‘
{ (task_s, machine_s) } = { max;,. MCT_list } (TL M1) (T4, M2) (T2, M3) (T3, Md)
GanttChart = GanttChart U { (task_s, machine_s) }
task_list = task_list — { task_s }

end while Sufferage
return GanttChart

100 88 94

60

M1 | M2 | M3 | M4 100 "
T1| 40 | 48 |134] 50 e v = B
T2 |50 | 82 | 88 | 89 w0 -
T3 |55 |68 |94 |93 » W —
T4 | 52 | 60 | 78 | 108 ° (T1, M4) ‘ (T2, M1) ‘ (T3, M2) ‘ (T4,M3)
18.01.2011 R. Prodan, Introduction to Scheduling 16

18.01.2011

Multi-Criteria Workflow Scheduling

= QOptimise multiple objectives simultaneously
Makespan

Reliability

Energy

Economic cost

O O O O

o ...
= Pareto curve
= Aggregate objective function
= Constrained optimization

Q‘E;@
ofc

18/01/2011 R. Prodan, Introduction to Scheduling 17

Bi-Criteria Scheduling

= Goal: optimise two contradictory criteria
= Two phase Dynamic Constraint Algorithm

o Primary scheduling phase optimises the
primary criterion

v Heterogeneous Earliest Finish Time (HEFT)
PREL

primary criterion
7/

v Preliminary solution: €, c?
o Secondary scheduling phase optimises the
secondary criterion

v’ Keep the primary objective within a sliding
constraint

primary criterion

N -
" sliding
_ constraint

secondary criterion
™ ™
FINAL PREL PREL PREL PREL
¢, —c SL,Wheresz(l ;.g.f(l Fp%-c

18.01.2011 R. Prodan, Introduction to Scheduling 18

18.01.2011

Multiple Choice Knapsack Problem

Multiple Choice Knapsack Problem Bi-Criteria Scheduling

n classes of items: S={S,, ..., S, }

18.01.2011

Set of items in each class: S, ={ e;, ...

Price of an item: p(e;)

Weight of an item: w(e;)

Find solution: sol ={s,, ..., s, }, ;€S;

Maximise total price: > p€,

i=1

Keep the weight below a limit L:Z":wt,- <t
i=1

7 eimi }

Workflow tasks

Set of machines

Primary criterion

Secondary criterion

Workflow schedule

Primary scheduling

Secondary scheduling

R. Prodan, Introduction to Scheduling

19

Secondary Scheduling

= Dynamic programming

mem_table = { solpg; }

for each activitiy a € workflow

for each sol € mem_table

for each machine m € machine_list
sol’ = modfiy(sol, a, m)
if ¢ (sol’)e[c,"REL, ¢, PREL + []

A sol’ is not dominated

then insert(sol’, mem_table)

18.01.2011

remove all sol dominated by sol’
return min,(sol’)

sliding constraint

fr_ Pmay CHRion

1

1

1

o
----- o

, :

_____ p:reljmlnaw_solmgf:o

R. Prodan, Introduction to Scheduling

secondary criterion

20

18.01.2011

10

Game Theoretic Approach?

= Multiple schedulers representing end-user’s objectives
o Minimise execution time, cost
o Maximise reliability
= Multiple resource managers representing resource provider’s objectives
o Maximise income, throughput, utilisation, fairness
o Minimise energy consumption
= Single or multi-criteria objective for each participant
= Game theoretic negotiation
End-User A End-User X

Enac?ment Scheduler 1 Scheduler p Enac_tment
Engine 1 Engine m

Cloud Resource Marketplace

1

Resource Resource Resource

Manager 1 Manager 2 Manager n
Cloud Cloud Cloud

Provider 1 Provider 2 Provider n

18.01.2011 R. Prodan, Introduction to Scheduling 21

Agenda

Introduction

Parallel and distributed applications

Compiler construction

Operating systems

18.01.2011 R. Prodan, Introduction to Scheduling 22

18.01.2011

11

Register Allocation

= Map program variables to machine registers L[o=

» Build a control flow graph of basic program b
blocks P

= Two types of variable references T3
o Use variables L2 / y Ly

o Define variables Py

® Program point between two consecutive o o
instructions h P
. . . . c=d -
= vis alive at program point p if P pl,‘a !
o There is a path from p to a use variable v Jop e Jomp Ly

\ !
o vis not redefined in between P \ ”‘j‘
. . . . Ly —
= Live range = set of points where a variable is , join Lz Ly
. 15
alive .

o b: pZI p3: p4: p9 e
o a: pll pz: p3: p4: pSI ps: p7: pg: pg: plOI p13: p14: p15

jump Leog

18.01.2011 R. Prodan, Introduction to Scheduling 23

Interference Graph

Two variables interfere if their
live range is not empty

Nodes of the graph are variables

Edges connect variables that
interfere with one another

Graph colouring problem AL
o Each register has a different colour

o Colour each node according to the x !
register assigned to the / \ /
B E
¢ —d

corresponding variable

o Two adjacent colours are
forbidden

18.01.2011 R. Prodan, Introduction to Scheduling 24

18.01.2011

12

Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

R. Prodan, Introduction to Scheduling

25

Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

b,a

R. Prodan, Introduction to Scheduling

26

18.01.2011

13

Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

a,C

b,a

R. Prodan, Introduction to Scheduling

27

Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

b,a
a,c

b,a

R. Prodan, Introduction to Scheduling

28

18.01.2011

14

Interference Graph

Instructions Live vars
a
b=a+2
b,a
c=b*b
a,c
b=c+1
b,a
returnb * a
18.01.2011 R. Prodan, Introduction to Scheduling 29
Interference Graph
" colour register;
Instructions Live vars § - eax
a
b=a+2 - ebx |
a,b [s '
c=b*hb
a,c
b=c+1 @
a,b / \
returnb * a @ @
18.01.2011 R. Prodan, Introduction to Scheduling 30

18.01.2011

15

Interference Graph

Instructions Live vars § eax
. 1
b=a+2 1 S
ab [e i
c=b*b

a,c
b=c+1 .

a,b / \
returnb * a

18.01.2011 R. Prodan, Introduction to Scheduling 31

Graph Colouring

NP-complete problem
o Fast and good heuristics required
Kempe’s algorithm [1879]
Step 1: Simplify
o Find a node with at most K-1 edges, remove it from the
graph, push it onto a stack, and recurse

o If the graph cannot be coloured, it will be simplified to graph
in which every node has at least K neighbours (sometimes
still K-colourable)

Step 2: Colour

o After the simplified sub-graph has been coloured, add back
the node on the top of the stack and assign it a colour not
taken by the adjacent nodes

18.01.2011 R. Prodan, Introduction to Scheduling 32

18.01.2011

16

Colouring

stack:
18.01.2011 R. Prodan, Introduction to Scheduling 33
Colouring

- colour register,
o >

o e

stack:
@/) C
34

R. Prodan, Introduction to Scheduling

18.01.2011

18.01.2011

17

Colouring

. colour register:

stack:
@ @ C
18.01.2011 R. Prodan, Introduction to Scheduling 35

Colouring
- colour register.
o >
o e

o stack:
e
36

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

18

Colouring

. colour register:

o =

o “ stack:
b
~ e
18.01.2011 R. Prodan, Introduction to Scheduling 37
Colouring
- colour register,
o >
o e
o : stack:
d
¢ b
~ a
o e
© © °
38

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

19

Colouring

. colour register:

o =

o stack
@ ¢ b
a
e s e
18.01.2011 R. Prodan, Introduction to Scheduling 39
Colouring
- colour register.
o >
o e
o stack:
. C
a
e s e
40

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

20

Colouring

o =

stack:

18.01.2011 R. Prodan, Introduction to Scheduling 41
Colouring

. colour register:

o >

o, e

stack:
. C

18.01.2011 R. Prodan, Introduction to Scheduling 42

18.01.2011

21

Colouring

. colour register:

o =

stack:
18.01.2011 R. Prodan, Introduction to Scheduling 43
- colour register.
| -
o e
44

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

22

18.01.2011

Colouring

i colour

N
(=)
()

all nodes have
2 neighbours!
R. Prodan, Introduction to Scheduling

18.01.2011

stack:

Colouring

. colour register:

o =

18.01.2011 R. Prodan, Introduction to Scheduling

stack:

46

23

Colouring

. colour register:

o =

e . stack
C
N a
@ d
18.01.2011 R. Prodan, Introduction to Scheduling 47
Colouring
- colour register.
o >
o e
o stack
: N a
@ d
18.01.2011 R. Prodan, Introduction to Scheduling 48

18.01.2011

24

18.01.2011

Colouring

. colour register:

o =

18.01.2011 R. Prodan, Introduction to Scheduling

stack:

49

Colouring

. colour register:

o =

18.01.2011 R. Prodan, Introduction to Scheduling

stack:

50

25

Colouring

. colour register.

o =

stack:
18.01.2011 R. Prodan, Introduction to Scheduling 51
Colouring

- colour register.
o >

o e

stack:
We got lucky!
52

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

26

Colouring

. colour register:

§ - eax ! Some graphs cannot be coloured:

e . stack:
: b
N e
a
d
18.01.2011 R. Prodan, Introduction to Scheduling 53
Colouring
- colour register.
| - eax ! Some graphs cannot be coloured:
o e
e . stack:
- e
a
d
18.01.2011 R. Prodan, Introduction to Scheduling 54

18.01.2011

27

Colouring

. colour register:

§ - eax ! Some graphs cannot be coloured:

o e stack:
e e
a
d
18.01.2011 R. Prodan, Introduction to Scheduling 55
Colouring
. colour register,
| - eax ! Some graphs cannot be coloured:
o, e
stack:
e
a
d
no colours left for e!
56

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

28

Chaitin’s Algorithm

= Renumber

o Discover live range information in the source program
= Build

o Build the interference graph.
= Coalesce

o Merge the live ranges of non-interfering variables related by copy
instructions (a:=b)

= Spill cost
o Compute the spill cost of each variable
= Simplify
o Kempe’s colouring algorithm
= Spill Code
o Insert loads and stores to commute values between registers and
memory
18.01.2011 R. Prodan, Introduction to Scheduling

57

Agenda

" |ntroduction

= Parallel and distributed applications
= Compilers

= Operating systems

18.01.2011 R. Prodan, Introduction to Scheduling

58

18.01.2011

29

Operating Systems Scheduling

Goal
o Load balancing on shared memory systems (SMP and multi-core)
o Multiplex a single CPU for multiple processes
Scheduling policy
o When it is time for a process to be removed from the CPU?
o Which ready process should be allocated to the CPU next?
Enqueuer
o Places a pointer to a process descriptor into the ready list
Context switcher

o Saves the contents of all processor registers for the process removed
from the CPU in its process descriptor

Dispatcher

o Selects one of the ready processes enqueued in the ready list and
allocates the CPU

Preemptive versus Non-Preemptive
Scheduling

= Non-preemptive scheduling yield(r, s) {

o Process calls the yield() system call to memory[r] = PC;
release the CPU

_ _ PC = memory(s];
o Multiple processes could simultaneously

yield to the scheduler }
o Scheduler selects and yields to one of the
processes = rands are usually
* Preemptive scheduling a function of the
process's id

o Interrupt system enforces periodic
involuntary interruption of any process
using an interval timer

o Invokes the scheduler and yield()

o Each process gets to run in units of time
slices (may be less than the interval time)

18.01.2011 R. Prodan, Introduction to Scheduling 60

18.01.2011

30

Simple Algorithms

Scheduling CPU Throughout Turnaround | Response | Deadline | Starvation
algorithm | Utilization gnp time time handling free
First In First .
out Low Low High Low No Yes
Shortest
Job First Medium High Medium Medium No No
Priority-
based Medium Low High High Yes No
scheduling
Round-
robin High Medium Medium High No Yes
scheduling
Multilevel
queue High High Medium Medium Low Yes
scheduling

18.01.2011

R. Prodan, Introduction to Scheduling

61

Multiple Level Feedback Queue

= Linux 2.6

= Minimise response and turnaround times without knowing the service

time

= 140 priority queues

o Static priorities 0—99 for real-time processes
o Static priorities 100—139 for normal processes set via nice system call
o Round-robin scheduling within each queue level
= O(1) insertion and selection time
o A new process is positioned at the end of the top-level queue
o Execute the process with the highest priority
= Dynamic priority calculation and adjustment

o Preempt and move jobs at the end of next priority queue if they consume their
time slice

o Move I/0 blocking jobs to higher priority queues
= Drawbacks
o CPU share not easy to calculate
o Possible to cheat the scheduler

18.01.2011

R. Prodan, Introduction to Scheduling

62

18.01.2011

31

Completely Fair Scheduler

= linux 2.6.23
= One single run queue
= “wait_runtime” value for each task
o Time the task should run to become completely fair and balanced
o Always zero on “ideal” hardware
. Ailways run the task with the largest wait_runtime for its time
slice

= Subtract the executed time slice from wait_runtime (minus
the “fair share”)
= QOrganise the tasks in a red-black tree based on their
wait_runtime
o O(log n) worst case search time

18.01.2011 R. Prodan, Introduction to Scheduliri3 HIL

Shared Memory Multiprocessor

Scheduling
" Linux 2.6

= Separate run queue for each processor

= Each processor only selects processes from its own
queue to run

= Queues are periodically rebalanced (every 200 ms)
= No cache awareness
= Processes with core affinity

18.01.2011 R. Prodan, Introduction to Scheduling 64

18.01.2011

32

Game Theoretic Scheduling?

= Different processes as game
players with different
resource requirements

o Thousands to millions

= Heterogeneous hardware L2 Cache
o Hundreds of heterogeneous / Main memory
cores / Hord Disk
o Different latencies to i of avtlable storags space————

memory modules
v'On-chip shared memories
v'Distributed shared memory

18.01.2011 R. Prodan, Introduction to Scheduling 65

Conclusions

Parallel and distributed applications

Compilers

Operating systems

Starting point for some joint research?

18.01.2011 R. Prodan, Introduction to Scheduling 66

18.01.2011

33

