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What is Scheduling?

= Decision making process that deals with allocation of
resources to tasks

o Processing units in a computing environment
o Routers (to handle packet traffic)

o Disk drives (I/0 scheduling)

o Printers (print spooler)

o Embedded systems

o

= Goal is to optimise one or more objectives
= A scheduling problem can be described by a triplet (o, 3, V)
o a describes the resource environment
o B describes the processing characteristics and constraints
o v describes the objective
o [Pinedo, Scheduling: Theory, Algorithms, and Systems, 1994]
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Resource Environments o

= Single machine

= |dentical machines in parallel

= Machines in parallel with different speeds
= Unrelated machines in parallel

= Flow shop

= Flexible flow shop
= Job shop

= Flexible job shop
= Open shop
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Processing Characteristics and Constraints

B

= Release dates

= Preemptions

= Precedence constraints (worflows)

= Sequence dependent setup times (file transfers)
= Job families

= Batch processing

= Breakdowns
= Machine eligibility restrictions

= Permutation (FIFO in flow shops)
= Blocking (in flow shops)

= Nowait (in flow shops)

= Recirculation (in job shops)
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Objectives Functions y

= Makespan (execution time)
= Turnaround (completion time)
= Response time

= Throughput

= Waiting time

= Communication time

= Load balance

= Processor utilisation

= Reliability

= Energy

= Economic cost
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Scheduling Problem

= Resource environment
o M unrelated machines in parallel

= Processing restrictions and constraints

o N tasks

o Independent (parameter studies)
o Workflow

Obijective function

o Execution time, ...

Prediction matrix

Machine

Task

o Objective function estimation for each task
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Conventional Scheduling Architecture

User Application

|

Scheduler

/\

Grid/Cloud
environments
SMP Clusters
(Time-shared Allocation) (Space-shared Allocation)
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Local Resource Manager Local Resource Manager Local Resource Manager

Problem Complexity

= Structure dependent and

~ ~
. . . - @+@+
intradependent objectives [% 90
o Makespan (execution time) < ®
structure dependent structure independent
o) NP_compIete (U”man' 75) (e.g. execution time) (e.g. economic cost)
o O(MV') complexity
. SO
= Structure independent and non- “'foog“‘:
intradependent objectives /Oo\
. ol
o Cost (simple models) 90 X2 2280800
o Reliability — °
(e.:.l:execution time) (e.g. econor:lic cost)

o Energy consumption
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ETC Matrix

Gantt Chart

= The execution time plan v7ties (votaxs sue cae

Gantt Chart
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Independent Task Scheduling

= O(N-M) heuristics

o Minimum Execution Time (MET)

o Minimum Completion Time (MCT)

o Switching Algorithm (SA)

o K-Percent Best (K-PB)

o Opportunistic Load Balancing (OLB)
= O(N2-M) heuristics

o Min-min

o Min-max

o Sufferage
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Min-Min Heuristic — O(N?-M)

= Determine the MCT for all the tasks
= Schedule only the task with the minimum MCT and reconsider the rest

algorithm min-min(task_list, machine_list)
GanttChart=®
while task_list # ®
foreach task e task_list
(machine, time) = MCT(task, machine_list, GanttChart)
MCT_list = MCT_list U (task, machine, time)
end foreach
(task_s, machine_s) = miny;,, MCT_list
GanttChart = GanttChart U (task_s, machine_s)

task_list = task_list —task_s
end while ML |2]2]2
return GanttChart Mm2lz2l21|2 12
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Min-Max Algorithm — O(N2-M)

algorithm min-max(task_list, machine_list)
GanttChart=9®
while task_list # @
foreach task e task_list
(machine, time) = MCT(task, machine_list, GanttChart)
MCT_list = MCT_list U (task, machine, time)
end foreach
(task_s, machine_s) = max,;,o MCT_list
GanttChart = GanttChart U (task_s, machine_s)
task_list = task_list —task_s

end while MLj2]2]2]2]2]2
return GanttChart M2 12
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Sufferage Heuristic — O(N?-M)

algorithm sufferage(task_list, machine_list) Min-Min
GanttChart = @
while task_list # ®
foreach task e task_list 80
(machine, time) = MCT(task, machine_list, GanttChart) eo
(machine2, time2) = 2"_MCT(task, Grid, GanttChart) 4 I
MCT_list = MCT_list U (task, machine, time2 - time) 0l
end foreach o ‘ ‘
{ (task_s, machine_s) } = { max;,. MCT_list } (TL M1) (T4, M2) (T2, M3) (T3, Md)
GanttChart = GanttChart U { (task_s, machine_s) }
task_list = task_list — { task_s }

end while Sufferage
return GanttChart

100 88 94

60

M1 | M2 | M3 | M4 100 "
T1| 40 | 48 |134] 50 e v = B
T2 |50 | 82 | 88 | 89 w0 -
T3 |55 |68 |94 |93 » W —
T4 | 52 | 60 | 78 | 108 ° (T1, M4) ‘ (T2, M1) ‘ (T3, M2) ‘ (T4,M3)
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Multi-Criteria Workflow Scheduling

= QOptimise multiple objectives simultaneously
Makespan

Reliability

Energy

Economic cost

O O O O

o ...
= Pareto curve
= Aggregate objective function
= Constrained optimization

Q‘E;@
ofc
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Bi-Criteria Scheduling

= Goal: optimise two contradictory criteria
= Two phase Dynamic Constraint Algorithm

o Primary scheduling phase optimises the
primary criterion

v Heterogeneous Earliest Finish Time (HEFT)
PREL

primary criterion
7/

v Preliminary solution: €, c?
o Secondary scheduling phase optimises the
secondary criterion

v’ Keep the primary objective within a sliding
constraint

primary criterion

N -
" sliding
_ constraint

secondary criterion
™ ™
FINAL PREL PREL PREL PREL
¢, —c SL,Wheresz(l ;.g.f(l Fp%-c
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Multiple Choice Knapsack Problem

Multiple Choice Knapsack Problem Bi-Criteria Scheduling

n classes of items: S={S,, ..., S, }

18.01.2011

Set of items in each class: S, ={ e;, ...

Price of an item: p(e;)

Weight of an item: w(e;)

Find solution: sol ={s,, ..., s, }, ;€S;

Maximise total price: > p€,

i=1

Keep the weight below a limit L:Z":wt,- <t
i=1

7 eimi }

Workflow tasks

Set of machines

Primary criterion

Secondary criterion

Workflow schedule

Primary scheduling

Secondary scheduling

R. Prodan, Introduction to Scheduling
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Secondary Scheduling

= Dynamic programming

mem_table = { solpg; }

for each activitiy a € workflow

for each sol € mem_table

for each machine m € machine_list
sol’ = modfiy(sol, a, m)
if ¢ (sol’)e[c,"REL, ¢, PREL + []

A sol’ is not dominated

then insert(sol’, mem_table)

18.01.2011

remove all sol dominated by sol’
return min,(sol’)

sliding constraint

fr_ Pmay CHRion

1

1

1

o
----- o

, :

_____ p:reljmlnaw_solmgf:o
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Game Theoretic Approach?

= Multiple schedulers representing end-user’s objectives
o Minimise execution time, cost
o Maximise reliability
= Multiple resource managers representing resource provider’s objectives
o Maximise income, throughput, utilisation, fairness
o Minimise energy consumption
= Single or multi-criteria objective for each participant
=  Game theoretic negotiation
End-User A End-User X

Enac?ment Scheduler 1 Scheduler p Enac_tment
Engine 1 Engine m

Cloud Resource Marketplace

1

Resource Resource Resource

Manager 1 Manager 2 Manager n
Cloud Cloud Cloud

Provider 1 Provider 2 Provider n
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Register Allocation

= Map program variables to machine registers L[ o=

» Build a control flow graph of basic program b
blocks P

= Two types of variable references T3
o Use variables L2 / y Ly

o Define variables Py

® Program point between two consecutive o o
instructions h P
. . . . c=d -
= vis alive at program point p if P pl,‘a !
o There is a path from p to a use variable v Jop e Jomp Ly

\ !
o vis not redefined in between P \ ”‘j‘
. . . . Ly —
= Live range = set of points where a variable is , join Lz Ly
. 15
alive .

o b: pZI p3: p4: p9 e
o a: pll pz: p3: p4: pSI ps: p7: pg: pg: plOI p13: p14: p15

jump Leog
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Interference Graph

Two variables interfere if their
live range is not empty

Nodes of the graph are variables

Edges connect variables that
interfere with one another

Graph colouring problem AL
o Each register has a different colour

o Colour each node according to the x !
register assigned to the / \ /
B E
¢ —d

corresponding variable

o Two adjacent colours are
forbidden
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Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars
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Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

b,a

R. Prodan, Introduction to Scheduling

26

18.01.2011

13



Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

a,C

b,a
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Instructions

b=a+2

c=b*b

b=c+1

returnb * a

18.01.2011

Interference Graph

Live vars

b,a
a,c

b,a
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Interference Graph

Instructions Live vars
a
b=a+2
b,a
c=b*b
a,c
b=c+1
b,a
returnb * a
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Interference Graph
" colour register;
Instructions Live vars § - eax
a
b=a+2 - ebx |
a,b [ s '
c=b*hb
a,c
b=c+1 @
a,b / \
returnb * a @ @
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Interference Graph

Instructions Live vars § eax
. 1
b=a+2 1 S
ab [ e i
c=b*b

a,c
b=c+1 .

a,b / \
returnb * a
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Graph Colouring

NP-complete problem
o Fast and good heuristics required
Kempe’s algorithm [1879]
Step 1: Simplify
o Find a node with at most K-1 edges, remove it from the
graph, push it onto a stack, and recurse

o If the graph cannot be coloured, it will be simplified to graph
in which every node has at least K neighbours (sometimes
still K-colourable)

Step 2: Colour

o After the simplified sub-graph has been coloured, add back
the node on the top of the stack and assign it a colour not
taken by the adjacent nodes
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Colouring

stack:
18.01.2011 R. Prodan, Introduction to Scheduling 33
Colouring

- colour  register,
o >

o e

stack:
@/ ) C
34
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Colouring

. colour register:

stack:
@ @ C
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Colouring
- colour register.
o >
o e

o stack:
e
36

18.01.2011 R. Prodan, Introduction to Scheduling

18.01.2011

18



Colouring

. colour register:

o =

o “ stack:
b
~ e
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Colouring
- colour  register,
o >
o e
o : stack:
d
¢ b
~ a
o e
© © °
38
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Colouring

. colour register:

o =

o stack
@ ¢ b
a
e s e
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Colouring
- colour register.
o >
o e
o stack:
. C
a
e s e
40
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Colouring

o =

stack:
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Colouring

. colour register:

o >

o, e

stack:
. C
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Colouring

. colour register:

o =

stack:
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- colour register.
| -
o e
44
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Colouring

i colour

N
(=)
()

all nodes have
2 neighbours!
R. Prodan, Introduction to Scheduling
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stack:

Colouring

. colour register:

o =
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46
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Colouring

. colour register:

o =

e . stack
C
N a
@ d
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Colouring
- colour register.
o >
o e
o stack
: N a
@ d
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Colouring

. colour register:

o =
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stack:
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Colouring

. colour register:

o =
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Colouring

. colour register.

o =

stack:
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Colouring

- colour register.
o >

o e

stack:
We got lucky!
52
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Colouring

. colour register:

§ - eax ! Some graphs cannot be coloured:

e . stack:
: b
N e
a
d
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Colouring
- colour register.
| - eax ! Some graphs cannot be coloured:
o e
e . stack:
- e
a
d
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Colouring

. colour register:

§ - eax ! Some graphs cannot be coloured:

o e stack:
e e
a
d
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Colouring
. colour register,
| - eax ! Some graphs cannot be coloured:
o, e
stack:
e
a
d
no colours left for e!
56
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Chaitin’s Algorithm

= Renumber

o Discover live range information in the source program
= Build

o Build the interference graph.
= Coalesce

o Merge the live ranges of non-interfering variables related by copy
instructions (a:=b)

= Spill cost
o Compute the spill cost of each variable
= Simplify
o Kempe’s colouring algorithm
= Spill Code
o Insert loads and stores to commute values between registers and
memory
18.01.2011 R. Prodan, Introduction to Scheduling
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Agenda

" |ntroduction

= Parallel and distributed applications
= Compilers

= Operating systems
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Operating Systems Scheduling

Goal
o Load balancing on shared memory systems (SMP and multi-core)
o Multiplex a single CPU for multiple processes
Scheduling policy
o When it is time for a process to be removed from the CPU?
o Which ready process should be allocated to the CPU next?
Enqueuer
o Places a pointer to a process descriptor into the ready list
Context switcher

o Saves the contents of all processor registers for the process removed
from the CPU in its process descriptor

Dispatcher

o Selects one of the ready processes enqueued in the ready list and
allocates the CPU

Preemptive versus Non-Preemptive
Scheduling

= Non-preemptive scheduling yield(r, s) {

o Process calls the yield() system call to memory[r] = PC;
release the CPU

_ _ PC = memory(s];
o Multiple processes could simultaneously

yield to the scheduler }
o Scheduler selects and yields to one of the
processes = rands are usually
* Preemptive scheduling a function of the
process's id

o Interrupt system enforces periodic
involuntary interruption of any process
using an interval timer

o Invokes the scheduler and yield()

o Each process gets to run in units of time
slices (may be less than the interval time)

18.01.2011 R. Prodan, Introduction to Scheduling 60
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Simple Algorithms

Scheduling CPU Throughout Turnaround | Response | Deadline | Starvation
algorithm | Utilization gnp time time handling free
First In First .
out Low Low High Low No Yes
Shortest . . . .
Job First Medium High Medium Medium No No
Priority-
based Medium Low High High Yes No
scheduling
Round-
robin High Medium Medium High No Yes
scheduling
Multilevel
queue High High Medium Medium Low Yes
scheduling

18.01.2011
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Multiple Level Feedback Queue

= Linux 2.6

= Minimise response and turnaround times without knowing the service

time

= 140 priority queues

o Static priorities 0—99 for real-time processes
o Static priorities 100—139 for normal processes set via nice system call
o Round-robin scheduling within each queue level
= O(1) insertion and selection time
o A new process is positioned at the end of the top-level queue
o Execute the process with the highest priority
= Dynamic priority calculation and adjustment

o Preempt and move jobs at the end of next priority queue if they consume their
time slice

o Move I/0 blocking jobs to higher priority queues
= Drawbacks
o CPU share not easy to calculate
o Possible to cheat the scheduler

18.01.2011
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Completely Fair Scheduler

= linux 2.6.23
= One single run queue
= “wait_runtime” value for each task
o Time the task should run to become completely fair and balanced
o Always zero on “ideal” hardware
. Ailways run the task with the largest wait_runtime for its time
slice

= Subtract the executed time slice from wait_runtime (minus
the “fair share”)
= QOrganise the tasks in a red-black tree based on their
wait_runtime
o O(log n) worst case search time

18.01.2011 R. Prodan, Introduction to Scheduliri3 HIL

Shared Memory Multiprocessor

Scheduling
" Linux 2.6

= Separate run queue for each processor

= Each processor only selects processes from its own
queue to run

= Queues are periodically rebalanced (every 200 ms)
= No cache awareness
= Processes with core affinity
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Game Theoretic Scheduling?

= Different processes as game
players with different
resource requirements

o Thousands to millions

= Heterogeneous hardware L2 Cache
o Hundreds of heterogeneous / Main memory
cores / Hord Disk
o Different latencies to i of avtlable storags space————

memory modules
v'On-chip shared memories
v'Distributed shared memory
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Conclusions

Parallel and distributed applications

Compilers

Operating systems

Starting point for some joint research?
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