
OLCmputational
gic

Introduction to Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

WS 2010/2011

RT (ICS @ UIBK) Chapter 1 1/34

Outline

Organization

On the role of system verification

Formal verification techniques

Model Checking

Course Objectives

RT (ICS @ UIBK) Chapter 1 2/34

Organization

Outline

Organization

On the role of system verification

Formal verification techniques

Model Checking

Course Objectives

RT (ICS @ UIBK) Chapter 1 3/34

Organization

Organization

LVA 703503 VO 1

cl-informatik.uibk.ac.at/teaching/ws10/imc

VO Wednesday 12:15 – 13:45 HS F
(no lecture on October 20, lecture ends in December)

online registration – required until 23:59 on October 30

consultation hours

René Thiemann 3N01 Monday 13:00 – 15:00

RT (ICS @ UIBK) Chapter 1 4/34

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws10/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://cl-informatik.uibk.ac.at/teaching/ws10/imc/
http://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.anmeldung?termine_id_in=28904
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Organization

Literature

the course is mainly based on the following books

• Christel Baier and Joost-Pieter Katoen
Principles of Model Checking
MIT Press, 2008

• Edmund M. Clarke, Orna Grumberg, and Doron A. Peled
Model Checking
MIT Press, 1999

RT (ICS @ UIBK) Chapter 1 5/34

Organization

Organization

• there will be exercises that help to understand the material of the
lecture

• some lectures will be replaced by a discussion of the exercises;
students can present their solutions and will be awarded with extra
points for the exam (depending on the quality of the solution)

• some examples and proofs are developed on the blackboard

⇒ these parts are not in the slides

⇒ if you cannot attend a lecture see to it that some friend of yours
makes notes

• Bachelor students cannot attend first exam (15 Dec)
(but perhaps second or third exam in March/April or June)

RT (ICS @ UIBK) Chapter 1 6/34

On the role of system verification

Outline

Organization

On the role of system verification

Formal verification techniques

Model Checking

Course Objectives

RT (ICS @ UIBK) Chapter 1 7/34

On the role of system verification

The importance of software correctness

• rapidly increasing integration of ICT in different applications:
• embedded systems
• communication protocols
• transportation systems

• reliability increasingly depends on hard- and software integrity

• defects can be fatal and extremely costly
• products subject to mass-production
• safety-critical systems

(ICT = information and computation technology)

RT (ICS @ UIBK) Chapter 1 8/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

On the role of system verification

A famous example: Ariane-5

the Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch
due to a conversion of a 64-bit floating point into a 16-bit integer value

RT (ICS @ UIBK) Chapter 1 9/34

On the role of system verification

What is system verification?

system verification amounts to check whether a system fulfills

the qualitative requirements that have been identified

verification 6= validation

verification = “check that we are building the thing right”

validation = “check that we are building the right thing”

RT (ICS @ UIBK) Chapter 1 10/34

On the role of system verification

Software verification techniques

• peer reviewing
• static technique: manual code inspection, no software execution
• detects between 31 and 93 % of defects with median of about 60 %
• subtle errors (concurrency and algorithm defects) hard to catch

• testing
• dynamic technique in which software is executed

• some figures
• 30 to 50 % of software project costs devoted to testing
• more time and effort is spent on validation than on construction
• accepted defect density: about 1 defect per 1,000 code lines

RT (ICS @ UIBK) Chapter 1 11/34

On the role of system verification

Catching software bugs: the sooner, the better

Analysis Conceptual
Design

Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error

50%

40%

30%

20%

10%

0%

2.5

5

7.5

10

12.5

(in %)
introduced

(in %)

System Testing

(in 1,000 US $)

RT (ICS @ UIBK) Chapter 1 12/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Formal verification techniques

Outline

Organization

On the role of system verification

Formal verification techniques

Model Checking

Course Objectives

RT (ICS @ UIBK) Chapter 1 13/34

Formal verification techniques

Formal methods

formal methods are the

“applied mathematics for modelling and analysing ICT systems”

they offer a large potential for

• obtaining an early integration of verification in the design process

• providing more effective verification techniques (higher coverage)

• reducing the verification time

highly recommended by several large institutions (NASA, . . .) for
safety-critical software

RT (ICS @ UIBK) Chapter 1 14/34

Formal verification techniques

Model-based formal verification

• starting-point is a model of the system under consideration

• modelling—a piece of art—already reveals several inconsistencies and
ambiguities

• accompanied with efficient algorithms for realistic systems
• improvements in data structures and algorithms + better computers

any verification using model-based techniques is only

as good as the model of the system

RT (ICS @ UIBK) Chapter 1 15/34

Formal verification techniques

Formal verification techniques for property ϕ

• model checking
• method: systematic check on ϕ in all states of model
• tool: model checker (Spin, NuSMV, UppAal, ...)
• applicable if: system generates (finite) behavioural model

• deductive methods, model-based simulation or testing, . . .

On the relevance of model checking

Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis are the winners
of the 2007 A.M. Turing Award for their original and continuing research in
a quality assurance process known as Model Checking.

RT (ICS @ UIBK) Chapter 1 16/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Formal verification techniques

Simulation and testing

• basic procedure
• take a model (simulation) or a realisation (testing)
• stimulate it with certain inputs, i.e., the tests
• observe reaction and check whether this is “desired”

• important drawbacks
• number of possible behaviours is very large (or even infinite)
• unexplored behaviours may contain the fatal bug

=⇒ testing/simulation can show the presence of errors, not their absence

RT (ICS @ UIBK) Chapter 1 17/34

Formal verification techniques

Model-based testing
product or
prototype

system

Modeling

system model

Test Generation

test suiteTest Execution

pass fail

as model checking verifies models and not realisations,
testing is an essential complementary technique

RT (ICS @ UIBK) Chapter 1 18/34

Model Checking

Outline

Organization

On the role of system verification

Formal verification techniques

Model Checking

Course Objectives

RT (ICS @ UIBK) Chapter 1 19/34

Model Checking

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

simulation

location error

not biased towards the
most probable scenarios

RT (ICS @ UIBK) Chapter 1 20/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking

What is model checking?

Model checking is an automated technique that, given

a finite-state model of a system and a formal property,

systematically checks whether this property holds

for (a given state in) that model.

RT (ICS @ UIBK) Chapter 1 21/34

Model Checking

The model checking process

• modeling phase
• model the system under consideration
• as a first sanity check, perform some simulations
• formalise the property to be checked

• running phase
• run the model checker to check the validity of the property in the model

• analysis phase
• property satisfied? → check next property (if any)
• property violated? →

1. analyse generated counterexample by simulation
2. refine the model, design, or property . . . and repeat the entire procedure

• out of memory? → try to reduce the model and try again

RT (ICS @ UIBK) Chapter 1 22/34

Model Checking

Typical model check properties

• is the generated result ok?

• can the system reach a deadlock situation, e.g., when two concurrent
programs are mutually waiting for each other and thus halt the entire
system?

• can a deadlock occur within 1 hour after a system reset?

• will there be a response to every request?

model checking requires a precise and unambiguous statement of the
properties to be examined; this is typically done in temporal logic

RT (ICS @ UIBK) Chapter 1 23/34

Model Checking

Deep Space 1 Spacecraft

modules of NASA’s Deep Space 1 spacecraft (launched in October 1998) have

been thoroughly examined using model checking

RT (ICS @ UIBK) Chapter 1 24/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking

A simple concurrent program

Promela code

i n t x = 0 ;

proctype I n c () {
do : : true −> i f : : (x < 200) −> x = x + 1 f i od

}
proctype Dec () {

do : : true −> i f : : (x > 0) −> x = x − 1 f i od
}
proctype R e s e t () {

do : : true −> i f : : (x == 200) −> x = 0 f i od
}
i n i t {

run I n c () ; run Dec () ; run R e s e t ()
}

is x always between (and including) 0 and 200?

RT (ICS @ UIBK) Chapter 1 25/34

Model Checking

How to check for the values of x?
extend the model with a “monitor” process that checks 0 6 x 6 200 . . .

i n t x = 0 ;

proctype I n c () {
do : : true −> i f : : (x < 200) −> x = x + 1 f i od

}
proctype Dec () {

do : : true −> i f : : (x > 0) −> x = x − 1 f i od
}
proctype R e s e t () {

do : : true −> i f : : (x == 200) −> x = 0 f i od
}
proctype Check () {

a s s e r t (x >= 0 && x <= 200)
}
i n i t {

run I n c () ; run Dec () ; run R e s e t () ; run Check ()
}

RT (ICS @ UIBK) Chapter 1 26/34

Model Checking

How to check for the values of x?
extend the model with a “monitor” process that checks 0 6 x 6 200 . . .

and let the model checker verify whether the assertion holds in every state
of the concurrent system . . .

pan: assertion violated ((x >= 0) && (x <= 200)) (at depth 1802)
pan: wrote pan_in.trail
...................
State-vector 32 byte, depth reached 3598, errors: 1

12609 states, stored

RT (ICS @ UIBK) Chapter 1 27/34

Model Checking

The counter-example

..............
605: proc 1 (Inc) line 9 "pan_in" (state 2) [((x<200))]
606: proc 1 (Inc) line 9 "pan_in" (state 3) [x = (x+1)]
607: proc 2 (Dec) line 5 "pan_in" (state 2) [((x > 0))]
608: proc 1 (Inc) line 9 "pan_in" (state 1) [(1)]
609: proc 3 (Reset) line 13 "pan_in" (state 2) [((x==200))]
610: proc 3 (Reset) line 13 "pan_in" (state 3) [x = 0]
611: proc 3 (Reset) line 13 "pan_in" (state 1) [(1)]
612: proc 2 (Dec) line 5 "pan_in" (state 3) [x = (x-1)]
613: proc 2 (Dec) line 5 "pan_in" (state 1) [(1)]
spin: line 17 "pan_in", Error: assertion violated
spin: text of failed assertion: assert(((x>=0)&&(x<=200)))

RT (ICS @ UIBK) Chapter 1 28/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking

Breaking the error

i n t x = 0 ;

proctype I n c () {
do : : true −> atomic { i f : : (x < 200) −> x=x+1 f i } od

}
proctype Dec () {

do : : true −> atomic { i f : : (x > 0) −> x=x−1 f i } od
}
proctype R e s e t () {

do : : true −> atomic { i f : : (x == 200) −> x=0 f i } od
}
proctype Check () {

a s s e r t (x >= 0 && x <= 200)
}
i n i t {

run I n c () ; run Dec () ; run R e s e t () ; run Check ()
}

RT (ICS @ UIBK) Chapter 1 29/34

Model Checking

The pros of model checking

• widely applicable (hardware, software, protocol systems, ...)

• allows for partial verification (only most relevant properties)

• potential “push-button” technology (software-tools)

• rapidly increasing industrial interest

• in case of property violation, a counter-example is provided

• sound and interesting mathematical foundations

• not biased to the most possible scenarios (such as testing)

RT (ICS @ UIBK) Chapter 1 30/34

Model Checking

The cons of model checking

• mainly focused on control-intensive applications (less data-oriented)

• any validation model checking is only as “good” as the system model

• impossible to check generalisations (in general)

nevertheless:

model checking is an effective technique

to expose potential design errors

RT (ICS @ UIBK) Chapter 1 31/34

Model Checking

Striking model checking examples

• security: Needham-Schroeder encryption protocol
• revealed error that remained undiscovered for 17 years

• transportation systems
• train model containing 10476 states

• model checkers for C, Java and C++
• used (and developed) by Microsoft, Digital, NASA
• successful application area: device drivers

• software in the current/next generation of space missiles
• NASA’s Mars Pathfinder, Deep Space 1, JPL LARS group

RT (ICS @ UIBK) Chapter 1 32/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Course Objectives

Outline

Organization

On the role of system verification

Formal verification techniques

Model Checking

Course Objectives

RT (ICS @ UIBK) Chapter 1 33/34

Course Objectives

Course topics

• basics
• transition systems
• Büchi automata

• temporal logics (LTL, CTL∗)
• syntax, semantics
• formalizations
• model checking algorithms

• modeling software systems
• concurrency
• nanoPromela
• state-space explosion problem

• . . .

RT (ICS @ UIBK) Chapter 1 34/34

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Organization
	On the role of system verification
	Formal verification techniques
	Model Checking
	Course Objectives

