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Organization

Organization

LVA 703503 VO 1

cl-informatik.uibk.ac.at/teaching/ws10/imc

VO Wednesday 12:15 – 13:45 HS F
(no lecture on October 20, lecture ends in December)

online registration – required until 23:59 on October 30

consultation hours

René Thiemann 3N01 Monday 13:00 – 15:00
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Organization

Literature

the course is mainly based on the following books

• Christel Baier and Joost-Pieter Katoen
Principles of Model Checking
MIT Press, 2008

• Edmund M. Clarke, Orna Grumberg, and Doron A. Peled
Model Checking
MIT Press, 1999
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Organization

Organization

• there will be exercises that help to understand the material of the
lecture

• some lectures will be replaced by a discussion of the exercises;
students can present their solutions and will be awarded with extra
points for the exam (depending on the quality of the solution)

• some examples and proofs are developed on the blackboard

⇒ these parts are not in the slides

⇒ if you cannot attend a lecture see to it that some friend of yours
makes notes

• Bachelor students cannot attend first exam (15 Dec)
(but perhaps second or third exam in March/April or June)
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On the role of system verification

The importance of software correctness

• rapidly increasing integration of ICT in different applications:
• embedded systems
• communication protocols
• transportation systems

• reliability increasingly depends on hard- and software integrity

• defects can be fatal and extremely costly
• products subject to mass-production
• safety-critical systems

(ICT = information and computation technology)
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On the role of system verification

A famous example: Ariane-5

the Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch
due to a conversion of a 64-bit floating point into a 16-bit integer value
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On the role of system verification

What is system verification?

system verification amounts to check whether a system fulfills

the qualitative requirements that have been identified

verification 6= validation

verification = “check that we are building the thing right”

validation = “check that we are building the right thing”
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On the role of system verification

Software verification techniques

• peer reviewing
• static technique: manual code inspection, no software execution
• detects between 31 and 93 % of defects with median of about 60 %
• subtle errors (concurrency and algorithm defects) hard to catch

• testing
• dynamic technique in which software is executed

• some figures
• 30 to 50 % of software project costs devoted to testing
• more time and effort is spent on validation than on construction
• accepted defect density: about 1 defect per 1,000 code lines
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On the role of system verification

Catching software bugs: the sooner, the better
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Formal verification techniques

Formal methods

formal methods are the

“applied mathematics for modelling and analysing ICT systems”

they offer a large potential for

• obtaining an early integration of verification in the design process

• providing more effective verification techniques (higher coverage)

• reducing the verification time

highly recommended by several large institutions (NASA, . . . ) for
safety-critical software
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Formal verification techniques

Model-based formal verification

• starting-point is a model of the system under consideration

• modelling—a piece of art—already reveals several inconsistencies and
ambiguities

• accompanied with efficient algorithms for realistic systems
• improvements in data structures and algorithms + better computers

any verification using model-based techniques is only

as good as the model of the system
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Formal verification techniques

Formal verification techniques for property ϕ

• model checking
• method: systematic check on ϕ in all states of model
• tool: model checker (Spin, NuSMV, UppAal, ...)
• applicable if: system generates (finite) behavioural model

• deductive methods, model-based simulation or testing, . . .

On the relevance of model checking

Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis are the winners
of the 2007 A.M. Turing Award for their original and continuing research in
a quality assurance process known as Model Checking.
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Formal verification techniques

Simulation and testing

• basic procedure
• take a model (simulation) or a realisation (testing)
• stimulate it with certain inputs, i.e., the tests
• observe reaction and check whether this is “desired”

• important drawbacks
• number of possible behaviours is very large (or even infinite)
• unexplored behaviours may contain the fatal bug

=⇒ testing/simulation can show the presence of errors, not their absence
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Formal verification techniques

Model-based testing
product or
prototype

system

Modeling

system model

Test Generation

test suiteTest Execution

pass fail

as model checking verifies models and not realisations,
testing is an essential complementary technique
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Model Checking

Model checking overview
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Model Checking

What is model checking?

Model checking is an automated technique that, given

a finite-state model of a system and a formal property,

systematically checks whether this property holds

for (a given state in) that model.
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Model Checking

The model checking process

• modeling phase
• model the system under consideration
• as a first sanity check, perform some simulations
• formalise the property to be checked

• running phase
• run the model checker to check the validity of the property in the model

• analysis phase
• property satisfied? → check next property (if any)
• property violated? →

1. analyse generated counterexample by simulation
2. refine the model, design, or property . . . and repeat the entire procedure

• out of memory? → try to reduce the model and try again
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Model Checking

Typical model check properties

• is the generated result ok?

• can the system reach a deadlock situation, e.g., when two concurrent
programs are mutually waiting for each other and thus halt the entire
system?

• can a deadlock occur within 1 hour after a system reset?

• will there be a response to every request?

model checking requires a precise and unambiguous statement of the
properties to be examined; this is typically done in temporal logic
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Model Checking

Deep Space 1 Spacecraft

modules of NASA’s Deep Space 1 spacecraft (launched in October 1998) have

been thoroughly examined using model checking
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Model Checking

A simple concurrent program

Promela code

i n t x = 0 ;

proctype I n c ( ) {
do : : true −> i f : : ( x < 200) −> x = x + 1 f i od

}
proctype Dec ( ) {

do : : true −> i f : : ( x > 0) −> x = x − 1 f i od
}
proctype R e s e t ( ) {

do : : true −> i f : : ( x == 200) −> x = 0 f i od
}
i n i t {

run I n c ( ) ; run Dec ( ) ; run R e s e t ( )
}

is x always between (and including) 0 and 200?
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Model Checking

How to check for the values of x?
extend the model with a “monitor” process that checks 0 6 x 6 200 . . .

i n t x = 0 ;

proctype I n c ( ) {
do : : true −> i f : : ( x < 200) −> x = x + 1 f i od

}
proctype Dec ( ) {

do : : true −> i f : : ( x > 0) −> x = x − 1 f i od
}
proctype R e s e t ( ) {

do : : true −> i f : : ( x == 200) −> x = 0 f i od
}
proctype Check ( ) {

a s s e r t ( x >= 0 && x <= 200)
}
i n i t {

run I n c ( ) ; run Dec ( ) ; run R e s e t ( ) ; run Check ( )
}
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Model Checking

How to check for the values of x?
extend the model with a “monitor” process that checks 0 6 x 6 200 . . .

and let the model checker verify whether the assertion holds in every state
of the concurrent system . . .

pan: assertion violated ((x >= 0) && (x <= 200)) (at depth 1802)
pan: wrote pan_in.trail
...................
State-vector 32 byte, depth reached 3598, errors: 1

12609 states, stored
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Model Checking

The counter-example

..............
605: proc 1 (Inc) line 9 "pan_in" (state 2) [((x<200))]
606: proc 1 (Inc) line 9 "pan_in" (state 3) [x = (x+1)]
607: proc 2 (Dec) line 5 "pan_in" (state 2) [((x > 0))]
608: proc 1 (Inc) line 9 "pan_in" (state 1) [(1)]
609: proc 3 (Reset) line 13 "pan_in" (state 2) [((x==200))]
610: proc 3 (Reset) line 13 "pan_in" (state 3) [x = 0]
611: proc 3 (Reset) line 13 "pan_in" (state 1) [(1)]
612: proc 2 (Dec) line 5 "pan_in" (state 3) [x = (x-1)]
613: proc 2 (Dec) line 5 "pan_in" (state 1) [(1)]
spin: line 17 "pan_in", Error: assertion violated
spin: text of failed assertion: assert(((x>=0)&&(x<=200)))
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Model Checking

Breaking the error

i n t x = 0 ;

proctype I n c ( ) {
do : : true −> atomic { i f : : ( x < 200) −> x=x+1 f i } od

}
proctype Dec ( ) {

do : : true −> atomic { i f : : ( x > 0) −> x=x−1 f i } od
}
proctype R e s e t ( ) {

do : : true −> atomic { i f : : ( x == 200) −> x=0 f i } od
}
proctype Check ( ) {

a s s e r t ( x >= 0 && x <= 200)
}
i n i t {

run I n c ( ) ; run Dec ( ) ; run R e s e t ( ) ; run Check ( )
}
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Model Checking

The pros of model checking

• widely applicable (hardware, software, protocol systems, ...)

• allows for partial verification (only most relevant properties)

• potential “push-button” technology (software-tools)

• rapidly increasing industrial interest

• in case of property violation, a counter-example is provided

• sound and interesting mathematical foundations

• not biased to the most possible scenarios (such as testing)
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Model Checking

The cons of model checking

• mainly focused on control-intensive applications (less data-oriented)

• any validation model checking is only as “good” as the system model

• impossible to check generalisations (in general)

nevertheless:

model checking is an effective technique

to expose potential design errors
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Model Checking

Striking model checking examples

• security: Needham-Schroeder encryption protocol
• revealed error that remained undiscovered for 17 years

• transportation systems
• train model containing 10476 states

• model checkers for C, Java and C++
• used (and developed) by Microsoft, Digital, NASA
• successful application area: device drivers

• software in the current/next generation of space missiles
• NASA’s Mars Pathfinder, Deep Space 1, JPL LARS group
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Course Objectives

Course topics

• basics
• transition systems
• Büchi automata

• temporal logics (LTL, CTL∗)
• syntax, semantics
• formalizations
• model checking algorithms

• modeling software systems
• concurrency
• nanoPromela
• state-space explosion problem

• . . .
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