

Introduction to Model Checking

René Thiemann

Institute of Computer Science University of Innsbruck

WS 2010/2011

Chapter 2

Outline

RT (ICS @ UIBK)

- Transition systems
- Model Checking of Linear Time Properties

• Regular Languages

- Finite Automata
- Büchi Automata
- Generalized Büchi Automata

1/39

Outline

- Notations
- Transition systems
- Model Checking of Linear Time Properties

• Regular Languages

- Finite Automata
- Büchi Automata
- Generalized Büchi Automata

- atomic propositions: $AP = \{a, b, \dots\}$
- signature: $\Sigma = \{A, B, \dots\}$, often $\Sigma = 2^{AP}$
- infinite words: $\Sigma^{\omega} = \{v, w, \dots\}$ where $w = A_1 A_2 A_3 \dots$
- states: *S* = {*s*, *t*, . . . }
- sequences of states: $ho = s_1 s_2 s_3 \ldots \in S^{\omega}$
- no distinction between set and its characterizing vector example: if AP = {a₁, a₂, a₃} then w ∈ (2^{AP})^ω is sequence of sets or equivalently, sequence of bitvectors

$$w = \{a_1, a_2\} \oslash \{a_1, a_3\} \ldots = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \ldots$$

- Notations
- Transition systems
- Model Checking of Linear Time Properties

• Regular Languages

- Finite Automata
- Büchi Automata
- Generalized Büchi Automata

RT (ICS @ UIBK)	Chapter 2	5/39

Transition systems

Model checking overview

Transition systems

- one way to describe the behaviour of systems
- digraphs where nodes represent states, and edges model transitions
- state:
 - the current phase of a traffic light
 - the current values of all program variables + the program counter
- transition: ("state change")
 - a switch from one phase to the next one
 - the execution of a program statement

Transition system

- a transition system TS is a tuple $(S, \rightarrow, I, AP, L)$ where
 - S is a set of states
 - $\longrightarrow \subseteq S \times S$ is a transition relation
 - $I \subseteq S$ is a set of initial states
 - AP is a set of atomic propositions
 - $L: S \to 2^{AP}$ is a labeling function

notation: $s \rightarrow s'$ instead of $(s, s') \in \longrightarrow$

A beverage vending machine

states?, transitions?, initial states?

The role of nondeterminism

here: nondeterminism is a feature!

- to model concurrency by interleaving
 - no assumption about the relative speed of processes
- to model implementation freedom
 - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
 - use incomplete information

Executions

• execution ρ of *TS*: sequence of states

$$\varrho = s_0 s_1 \ldots s_n \ldots$$

such that

- $s_i \rightarrow s_{i+1}$ for all $0 \leqslant i \in \mathbb{N}$
- *s*₀ ∈ *I*

(w.l.o.g. consider only infinite executions)

 trace of an execution: sequence of sets of atomic propositions, i.e., trace(ρ) ∈ (2^{AP})^ω

$$trace(\varrho) = L(s_0) L(s_1) L(s_2) L(s_3) \ldots$$

• *Traces*(*TS*): set of all traces of all executions of *TS* it defines the observable behaviour of *TS*

Chapter 2

RT (ICS @ UIBK)

Chapter 2

13/39

Transition systems

transition systems \neq finite automata since

- there are no accept states
- set of states may be countably infinite (but in this lecture: only finite sets of states)
- may have infinite branching
- non-determinism has a different role
- \Rightarrow transition systems are appropriate for reactive system behavior

Outline

- Notations
- Transition systems
- Model Checking of Linear Time Properties

• Regular Languages

- Finite Automata
- Büchi Automata
- Generalized Büchi Automata

$Requirements \neq Specification$

requirements

- high-level description (consider scheduler for exclusive access)
 - (the scheduler should be correct)
 - no two clients get access at the same time
 - the scheduler should be fair
 - there is no deadlock
- what we observe from system: $Traces(TS) \subseteq (2^{AP})^{\omega}$
- ⇒ how to answer question "does system satisfy requirements"? problem: to imprecise
- \Rightarrow we need requirements in a precise, i.e., mathematical specification

Linear Time Properties

one main idea to specify requirements: describe allowed traces

- specification is set $S \subseteq (2^{AP})^{\omega}$ (linear time property)
- system TS satisfies S iff every trace of TS is allowed w.r.t. S:

Traces(*TS*) $\subset S$

- model checking of linear time properties:
 given *Traces*(*TS*) and *S*, answer *Traces*(*TS*) ⊆ *S*
- \Rightarrow precise formulation, no ambiguity
 - upcoming problems
 - how to specify sets $\mathcal S$ conveniently ...
 - ... such that $Traces(TS) \subseteq S$ can be decided

The requirements of model checking

essentially we need a mechanism to represent the set S(R) of allowed traces for some requirement R conveniently

- possible classes: finite, regular, context-free, context-sensitive, ...
- model checking requires checking *Traces*(*TS*) ⊆ S(*R*) or equivalently: *Traces*(*TS*) ∩ S(¬*R*) = Ø where ¬*R* describes forbidden traces
- \Rightarrow requirements on class of language
 - closure under intersection
 - emptyness decidable
 - expressive enough to represent Traces(TS) and $S(\neg R)$
 - use regular languages, they are closed under all boolean operations
 - possible representations of regular languages
 - regular expressions
 - non-recursive grammars
 - finite automata

RT (ICS @ UIBK)

Chapter 2

19/39

Regular Languages

Outline

- Notations
- Transition systems
- Model Checking of Linear Time Properties

• Regular Languages

- Finite Automata
- Büchi Automata
- Generalized Büchi Automata

Model checking overview

Finite Automata

a nondeterministic finite automaton (NFA) \mathcal{A} is a tuple $(\mathcal{Q}, \Sigma, \delta, q_0, F)$ where:

- $Q = \{q_0, \ldots, q_n\}$ is a finite set of states
- Σ is an alphabet
- $\delta: \mathcal{Q} \times \Sigma \to 2^{\mathcal{Q}}$ is a transition function
- q₀ is the initial state
- $F \subseteq Q$ is a set of final (or: accepting) states

Language of an NFA

- NFA $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, q_0, F)$ and word $w = A_1 \dots A_n \in \Sigma^*$
- run of w in \mathcal{A} : finite sequence $q_0 q_1 \ldots q_n$ such that
 - $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leq i < n$
- run $q_0 q_1 \ldots q_n$ is accepting iff $q_n \in F$
- $w \in \Sigma^*$ is accepted by \mathcal{A} iff there exists accepting run for w
- accepted language of \mathcal{A} :

 $\mathcal{L}(\mathcal{A}) = ig\{ w \in \Sigma^* \mid \text{ there exists an accepting run for } w ext{ in } \mathcal{A} ig\}$

- NFA \mathcal{A} and \mathcal{A}' are equivalent iff $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$
- language $\mathcal L$ is regular iff $\mathcal L = \mathcal L(\mathcal A)$ for some NFA $\mathcal A$

RT (ICS @ UIBK)	Chapter 2	23/39
Regular Languages		Büchi Automata

Büchi Automata

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple $(\mathcal{Q}, \Sigma, \delta, q_0, F)$ where:

- $\mathcal{Q} = \{q_0, \ldots, q_n\}$ is a finite set of states
- Σ is an alphabet
- $\delta: \mathcal{Q} \times \Sigma \to 2^Q$ is a transition function
- $q_0 \in \mathcal{Q}$ is the initial state
- $F \subseteq Q$ is a set of final (or: accepting) states

Language of a NBA

- NBA $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, q_0, F)$ and word $w = A_1 \dots A_n \dots \in \Sigma^{\omega}$
- run for w in A is an infinite sequence $q_0 q_1 \ldots q_n \ldots$ such that:

```
• q_i \xrightarrow{A_{i+1}} q_{i+1} for all i \in \mathbb{N}
```

• run $q_0 q_1 \ldots q_n \ldots$ is accepting iff

for infinitely many indices $i: q_i \in F$

- $w \in \Sigma^{\omega}$ is *accepted* by \mathcal{A} iff there exists an accepting run for w
- accepted language of \mathcal{A} :

 $\mathcal{L}(\mathcal{A}) = \left\{ w \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } w \text{ in } \mathcal{A}
ight\}$

- NBA \mathcal{A} and \mathcal{A}' are equivalent iff $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$
- language \mathcal{L} is ω -regular iff $\mathcal{L} = \mathcal{L}(\mathcal{A})$ for some NBA \mathcal{A}

RT (ICS @ UIBK)	Chapter 2	25/39
Regular Languages		Generalized Büchi Automata

Generalized Büchi Automata

generalized Büchi automaton (GNBA) is tuple

 $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, q_0, F_1, \dots, F_k)$ where

- everything is like for NBAs except that
- there are multiple sets of final states F_1, \ldots, F_k where each $F_i \subseteq Q$
- run q₀ q₁ ... q_n ... is accepting iff for each 1 ≤ j ≤ k there are infinitely many indices i: q_i ∈ F_j
- NBAs are GNBAs where k = 1
- each GNBA can be translated into equivalent NBA (with states $Q \times \{1, \dots, \max(1, k)\}$)

GNBAs to specify requirements

Safety properties: (refutation by a finite prefix of an ω -word)

- 1. always at most one traffic light is showing green
- 2. green cannot be directly followed by red

Liveness properties: (refutation only by whole ω -word)

- 3. we will see green infinitely often
- 4. whenever we select sprite then later on we will get a sprite
- GNBAs are closed under union, intersection, and negation

 \Rightarrow many interesting properties can be expressed by GNBAs

Recall: requirements of model checking

- model checking requires checking *Traces*(*TS*) ∩ S(¬*R*) = Ø
 where ¬*R* describes forbidden traces
- \Rightarrow requirements on class of language
 - expressive enough to represent Traces(TS)
 - closure under intersection
 - emptyness decidable

Expressing Transition Systems as GNBAs

aim: for $TS = (S, \rightarrow, I, AP, L)$ construct A_{TS} with $\mathcal{L}(A_{TS}) = Traces(TS)$

problems:

- labels/letters are at the states in *TS*, but on the transitions in GNBAs
- several initial states in TS, but only one initial state in GNBAs

solution:

- label A of transition system state corresponds to upcoming letter to read in GNBA
- use states of *TS* as states of GNBA, but use new initial state

concrete: $A_{TS} = (S \uplus \{q_0\}, 2^{AP}, \delta, q_0)$ with δ defined as follows

- $\delta(s,A) = \{s' \mid L(s) = A, s \rightarrow s'\}$
- $\delta(q_0, A) = \{ s' \mid s \in I, L(s) = A, s \rightarrow s' \}$

RT (ICS @ UIBK)

Chapter 2

31/39

Generalized Büchi Automata

Regular Languages

Soundness of A_{TS}

Theorem

 $\mathcal{L}(\mathcal{A}_{TS}) = \mathit{Traces}(TS)$

GNBA for Intersection

aim: for $\mathcal{A}_i = (\mathcal{Q}_i, \Sigma, \delta_i, q_{0,i}, F_{1,i}, \dots, F_{k_i,i})$ construct $\mathcal{A}_{\mathcal{A}_1 \cap \mathcal{A}_2}$ with $\mathcal{L}(\mathcal{A}_{\mathcal{A}_1 \cap \mathcal{A}_2}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$

idea: simulate runs in \mathcal{A}_1 and \mathcal{A}_2 in parallel

- use cartesian product of states
- demand that all final states are visited infinitely often

concrete: $\mathcal{A}_{\mathcal{A}_1 \cap \mathcal{A}_2} = (\mathcal{Q}, \Sigma, \delta, q_0, F'_1, \dots, F'_{k_1}, F''_1, \dots, F''_{k_2})$ where

- $Q = Q_1 \times Q_2$
- $q_0 = (q_{0,1}, q_{0,2})$
- $\delta((q_1, q_2), A) = \{(q'_1, q'_2) \mid q'_1 \in \delta_1(q_1, A), q'_2 \in \delta_2(q_2, A)\}$
- $F'_j = F_{j,1} \times Q_2$ and $F''_j = Q_1 \times F_{j,2}$

RT (ICS @ UIBK)

Chapter 2

Regular Language

Generalized Büchi Automata

33/39

Example: no direct switch from green to red

Soundness of $\mathcal{A}_{\mathcal{A}_1 \cap \mathcal{A}_2}$

Theorem

let G be a graph (V, E) with nodes V and edges E

- set C ⊆ V is a cycle of G iff
 for all v₁, v₂ ∈ C there is a non-empty path from v₁ to v₂
- a strongly connected component (SCC) is a maximal cycle
 (C is SCC iff both C is cycle and C' ⊃ C implies C' is not a cycle)
- remarks:
 - two SCCs C_1 and C_2 are either disjoint or identical
 - the set of SCCs of a graph can be determined in linear time (Kosaraju)

Algorithm for Checking $\mathcal{L}(\mathcal{A}) = \varnothing$ for GNBA \mathcal{A}

 $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, q_0, F_1, \dots, F_k)$ accepts at least one ω -word

- iff there is accepting run $q_0 q_1 q_2 \ldots$ of \mathcal{A}
- iff there is run $q_0 q_1 q_2 \ldots$ where for each F_i there is some $q_{f,i} \in F_i$ that occurs infinitely often
- iff in the graphical representation of A there is a path from q₀ to some SCC containing all q_{f,i}'s
- iff in the graphical representation of A there is a path from q₀ to some SCC containing at least one final state of each F_i

 \Rightarrow compute SCCs of \mathcal{A} (linear time, Kosaraju's algorithm) and perform reachability-analysis from q_0 (linear time, depth first search)

- if no SCC with final states from each F_i reachable from q_0 : $\mathcal{L}(\mathcal{A}) = \emptyset$
- otherwise, obtain path from q_0 to $q_1 \in SCC$ and non-empty path from q_1 to q_1 traversing all nodes in the SCC with corresponding words w_{01} and w_{11}

```
\Rightarrow w_{01}w_{11}^{\omega} \in \mathcal{L}(\mathcal{A})
```

RT (ICS @ UIBK)

Regular Languages

Chapter 2

Generalized Büchi Automata

Example (GNBA where input letters are omitted)

Summary

- model checking for linear time properties:
 - specify allowed traces $\mathcal{S}(R)$ or forbidden traces $\mathcal{S}(\neg R)$
 - decide

 $Traces(T) \subseteq S(R)$ or $Traces(TS) \cap S(\neg R) = \emptyset$

- NFA over finite words → (G)NBA over infinite words (regular languages → regular ω-languages)
- GNBAs can encode several requirements (allowed / forbidden traces)
- GNBAs can encode transition systems
- GNBAs are closed under Boolean operations (here: only intersection)
- emptyness of GNBAs is decidable

Chapter 2