tc

Introduction to Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

WS 2010/2011

Chapter 2 1/39

INLY X277

@ Notations

@ Transition systems

@ Model Checking of Linear Time Properties

@ Regular Languages
e Finite Automata
e Biuchi Automata
e Generalized Buchi Automata

RT (ICS @ UIBK) Chapter 2 2/39

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws10/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

@ Notations

RT (ICS @ UIBK) Chapter 2 3/39

e atomic propositions: AP ={a,b,...}

e signature: ¥ = {A,B,...}, often ¥ = 24P

e infinite words: X% = {v, w,...} where w = AjA2As3 ...
o states: S={s,t,...}

e sequences of states: p = s15ps3... € S¥

e no distinction between set and its characterizing vector
example: if AP = {a1, ap, a3} then w € (24F)% is sequence of sets or
equivalently, sequence of bitvectors

1 0 1
W:{al,ag}@{al,a3}...= 1 0
0 0 1

RT (ICS @ UIBK) Chapter 2 4/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

@ Transition systems

RT (ICS @ UIBK) Chapter 2 5/39

Transition systems

Model checking overview

formalizing modeling

property . .
specification @D this section
model checking

e

NEENER) Chapter 2

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transition systems

one way to describe the behaviour of systems

digraphs where nodes represent states, and edges model transitions

state:

e the current phase of a traffic light
e the current values of all program variables + the program counter

transition: (“state change™)

e a switch from one phase to the next one
e the execution of a program statement

RT (ICS @ UIBK) Chapter 2 ES

Transition system

a transition system TS is a tuple (S, —, I, AP, L) where
e S is a set of states
e — C S x Sisa transition relation

e /| C Sis a set of initial states

AP is a set of atomic propositions

L:S— 24P s 3 labeling function

notation: s — s’ instead of (s,s’) € —

RT (ICS @ UIBK) Chapter 2 8/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

A beverage vending machine

states?, transitions?, initial states?

RT (ICS @ UIBK) Chapter 2 9/39

Atomic propositions?

RT (ICS @ UIBK) Chapter 2 10/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The role of nondeterminism

here: nondeterminism is a feature!
e to model concurrency by interleaving
e no assumption about the relative speed of processes
e to model implementation freedom
e only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
e use incomplete information

RT (ICS @ UIBK) Chapter 2 11/39

Executions

e execution p of TS: sequence of states

O — S0S1 .--57 ...
such that
o s;—siypforall0</ieN
o so€l

(w.l.o.g. consider only infinite executions)

e trace of an execution: sequence of sets of atomic propositions, i.e.,
trace(p) € (2A4F)~

trace(p) = L(sp) L(s1) L(s2) L(s3) ...

o Traces(TS): set of all traces of all executions of TS
it defines the observable behaviour of TS

RT (ICS @ UIBK) Chapter 2 12/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

RT (ICS @ UIBK) Chapter 2 13/39

Summary

transition systems # finite automata since

there are no accept states

set of states may be countably infinite
(but in this lecture: only finite sets of states)

may have infinite branching
non-determinism has a different role

transition systems are appropriate for reactive system behavior

RT (ICS @ UIBK) Chapter 2 14/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking of Linear Time Properties

Outline

@ Model Checking of Linear Time Properties

NEENER)

Chapter 2

15/39

Model Checking of Linear Time Properties

Model checking overview

this section

requirements

property
specification

mod

eling

NEENER)

Chapter 2

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Requirements # Specification

requirements

o high-level description (consider scheduler for exclusive access)

(the scheduler should be correct)

no two clients get access at the same time
the scheduler should be fair

there is no deadlock

e what we observe from system: Traces(TS) C (24F)~

= how to answer question “does system satisfy requirements” ?
problem: to imprecise

= we need requirements in a precise, i.e., mathematical specification

RT (ICS @ UIBK) Chapter 2 17/39

Linear Time Properties

one main idea to specify requirements: describe allowed traces
e specification is set S C (24F)« (linear time property)
e system TS satisfies S iff every trace of TS is allowed w.r.t. S:
Traces(TS) C S

e model checking of linear time properties:
given Traces(TS) and S, answer Traces(TS) C S

= precise formulation, no ambiguity

e upcoming problems

e how to specify sets S conveniently ...
o ...such that Traces(TS) C S can be decided

RT (ICS @ UIBK) Chapter 2 18/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The requirements of model checking

essentially we need a mechanism to represent the set S(R) of allowed
traces for some requirement R conveniently

e possible classes: finite, regular, context-free, context-sensitive, . ..
e model checking requires checking Traces(TS) C S(R)
or equivalently: Traces(TS)NS(—R) =9
where — R describes forbidden traces

= requirements on class of language

e closure under intersection
e emptyness decidable
e expressive enough to represent Traces(TS) and S(— R)

e use regular languages, they are closed under all boolean operations

e possible representations of regular languages

e regular expressions
® non-recursive grammars
e finite automata

RT (ICS @ UIBK) Chapter 2 19/39

Outline

@ Regular Languages
e Finite Automata
e Buchi Automata
o Generalized Buchi Automata

RT (ICS @ UIBK) Chapter 2 20/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model checking overview

formalizing modeling

property
s system model
specification

model checking

foundations in

RT (ICS @ UIBK) Chapter 2 21/39

Finite Automata

a nondeterministic finite automaton (NFA) A is a tuple (Q, %, 4, qo, F) where:

e Q=1{qo,.-.,qn} is a finite set of states

2 is an alphabet

5: O xY — 22 is a transition function

qo is the initial state

RT (ICS @ UIBK) Chapter 2 22/39

F C Q is a set of final (or: accepting) states

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Language of an NFA

NFA A=(9Q,%,0,q0,F) and word w=A; ... A, € ¥
e run of win A: finite sequence gg g1 ... g, such that
o q,%qiﬂ forall 0 < i <n
® run gopqi ... gn is accepting iff g, € F
e weE X*is accepted by A iff there exists accepting run for w

e accepted language of A:
L(A) = {we I*| there exists an accepting run for win A }

e NFA A and A’ are equivalent iff £L(A) = L(A)
e language L is regular iff £ = L(.A) for some NFA A

RT (ICS @ UIBK) Chapter 2 23/39

Buchi Automata

A nondeterministic Biichi automaton (NBA) A is a tuple (Q, X, 4, go, F) where:

Q =1{qo,...,qn} is a finite set of states

> is an alphabet

§: QO xY — 29 s a transition function

go € Q is the initial state

F C Q is a set of final (or: accepting) states

A
)@ o
B A

RT (ICS @ UIBK) Chapter 2 24/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Language of a NBA

NBA A=(9Q,%X,0,q0,F) and word w=A; ... A,... € X%
run for win A is an infinite sequence o g1 ... gn ... such that:

° q,%q,-ﬂ for all i € IN
run goqi ... gn ... is accepting iff
for infinitely many indices i: g; € F
w € X% is accepted by A iff there exists an accepting run for w

accepted language of A:
L(A) = {we]| there exists an accepting run for win A }

NBA A and A’ are equivalent iff L(A) = L(A)
language L is w-regular iff £ = L(.A) for some NBA A

RT (ICS @ UIBK) Chapter 2 25/39

Generalized Buchi Automata

generalized Biichi automaton (GNBA) is tuple

A:

(9,%,6,qo0, F1,. .., Fx) where

everything is like for NBAs except that

there are multiple sets of final states F1, ..., Fx where each F; C O

run go qi - .- gn ... is accepting iff for each 1 < j < k there are
infinitely many indices i: g; € F;

NBAs are GNBAs where kK =1

each GNBA can be translated into equivalent NBA (with states
Q x{1,...,max(1,k)})

RT (ICS @ UIBK) Chapter 2 26/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

GNBAs to specify requirements

Safety properties: (refutation by a finite prefix of an w-word)
1. always at most one traffic light is showing green
2. green cannot be directly followed by red

Liveness properties: (refutation only by whole w-word)
3. we will see green infinitely often

4. whenever we select sprite then later on we will get a sprite

e GNBAs are closed under union, intersection, and negation

=- many interesting properties can be expressed by GNBAs

RT (ICS @ UIBK) Chapter 2 27/39

GNBAs to specify requirements
R - R

RT (ICS @ UIBK) Chapter 2 28/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recall: requirements of model checking

e model checking requires checking Traces(TS)NS(—R) = o
where — R describes forbidden traces

= requirements on class of language

e expressive enough to represent Traces(TS)
e closure under intersection
e emptyness decidable

RT (ICS @ UIBK) Chapter 2 29/39

Expressing Transition Systems as GNBAs
aim: for TS = (S, —, 1, AP, L) construct Ars with £(Ars) = Traces(TS)

problems:
o labels/letters are at the states in TS, but on the transitions in GNBAs

e several initial states in TS, but only one initial state in GNBAs

solution:

e label A of transition system state corresponds to upcoming letter to
read in GNBA

e use states of TS as states of GNBA, but use new initial state

concrete: A7s = (St {qo}, 2,6, qo) with § defined as follows
e §(s,A)={s' | L(s)=A,s — 5}
e 0(qo,A)={s'|sel,L(s)=As— 5}

RT (ICS @ UIBK) Chapter 2 30/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Regular Languages Generalized Biichi Automata

Example

RT (ICS @ UIBK) Chapter 2 31/39

Regular Languages Generalized Biichi Automata

Soundness of A7s

Theorem

L(Ats) = Traces(TS)

RT (ICS @ UIBK) Chapter 2 32/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

GNBA for Intersection

aim: for A; = (9Q;,%, 9, q0,i, F1i,-- ., Fk,i) construct A,n4, with
'C(A-AlﬂAz) — 'C(Al) M E(‘A2)

idea: simulate runs in A; and A5 in parallel
e use cartesian product of states
e demand that all final states are visited infinitely often

concrete: Auna, = (Q,%,6,90, F1, ..., Fi, F{', ..., Fp) where
e O =0 x 9
* go = (qo,1,90,2)
e 5((q1,q2),A) = {(q1,95) | a1 € 01(q1, A), 45 € d2(q2, A)}
e Fi=Fj1xQzand F' =01 x Fj»

RT (ICS @ UIBK) Chapter 2 33/39

Example: no direct switch from green to red

34/39

RT (ICS @ UIBK) Chapter 2

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Soundness of A 4.4,

Theorem

'C(AAlﬂAz) — ‘C(Al) M [’(A2)

RT (ICS @ UIBK) Chapter 2 35/39

Checking Emptiness of GNBAs

let G be a graph (V, E) with nodes V and edges E

e set C C V is a cycle of G iff
for all vi, v» € C there is a non-empty path from v; to v,

e a strongly connected component (SCC) is a maximal cycle
(C is SCC iff both C is cycle and C' O C implies C’ is not a cycle)

e remarks:

e two SCCs (; and G, are either disjoint or identical
o the set of SCCs of a graph can be determined in linear time (Kosaraju)

RT (ICS @ UIBK) Chapter 2 36/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Algorithm for Checking £(A) = @ for GNBA A

A=(9,%,6,qo, F1,...,Fx) accepts at least one w-word

e iff there is accepting run go g1 go ... of A

e iff there is run qo g1 g2 ... where for each F; there is some gr; € F;
that occurs infinitely often

e iff in the graphical representation of A there is a path from gg to
some SCC containing all gf;'s

e iff in the graphical representation of A there is a path from gg to
some SCC containing at least one final state of each F;

= compute SCCs of A (linear time, Kosaraju's algorithm)
and perform reachability-analysis from qg (linear time, depth first search)

e if no SCC with final states from each F; reachable from qo: L(A) = @

e otherwise, obtain path from g9 to g1 € SCC and non-empty path
from g1 to g1 traversing all nodes in the SCC with corresponding
words wp1 and wis
= Wp1 Wﬁ € E(.A)

RT (ICS @ UIBK) Chapter 2 37/39
Example (GNBA where input letters are omitted)
RT (ICS @ UIBK) Chapter 2 38/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

model checking for linear time properties:

e specify allowed traces S(R) or forbidden traces S(— R)
e decide

Traces(T) C S(R) or Traces(TS)NS(—R) =

NFA over finite words — (G)NBA over infinite words
(regular languages — regular w-languages)

GNBAs can encode several requirements (allowed / forbidden traces)

GNBAs can encode transition systems

GNBAs are closed under Boolean operations (here: only intersection)

emptyness of GNBAs is decidable

RT (ICS @ UIBK) Chapter 2 39/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Notations
	Transition systems
	Model Checking of Linear Time Properties
	Regular Languages
	Finite Automata
	Büchi Automata
	Generalized Büchi Automata

