
OLCmputational
gic

Introduction to Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

WS 2010/2011

RT (ICS @ UIBK) Chapter 2 1/39

Outline

Notations

Transition systems

Model Checking of Linear Time Properties

Regular Languages
Finite Automata
Büchi Automata
Generalized Büchi Automata

RT (ICS @ UIBK) Chapter 2 2/39

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws10/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Notations

Outline

Notations

Transition systems

Model Checking of Linear Time Properties

Regular Languages
Finite Automata
Büchi Automata
Generalized Büchi Automata

RT (ICS @ UIBK) Chapter 2 3/39

Notations

• atomic propositions: AP = {a, b, . . . }
• signature: Σ = {A,B, . . . }, often Σ = 2AP

• infinite words: Σω = {v ,w , . . . } where w = A1A2A3 . . .

• states: S = {s, t, . . . }
• sequences of states: ρ = s1s2s3 . . . ∈ Sω

• no distinction between set and its characterizing vector
example: if AP = {a1, a2, a3} then w ∈ (2AP)ω is sequence of sets or
equivalently, sequence of bitvectors

w = {a1, a2}∅ {a1, a3} . . . =

(
1

1

0

) (
0

0

0

) (
1

0

1

)
. . .

RT (ICS @ UIBK) Chapter 2 4/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Transition systems

Outline

Notations

Transition systems

Model Checking of Linear Time Properties

Regular Languages
Finite Automata
Büchi Automata
Generalized Büchi Automata

RT (ICS @ UIBK) Chapter 2 5/39

Transition systems

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

this section

RT (ICS @ UIBK) Chapter 2 6/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Transition systems

Transition systems

• one way to describe the behaviour of systems

• digraphs where nodes represent states, and edges model transitions

• state:
• the current phase of a traffic light
• the current values of all program variables + the program counter

• transition: (“state change”)
• a switch from one phase to the next one
• the execution of a program statement

RT (ICS @ UIBK) Chapter 2 7/39

Transition systems

Transition system

a transition system TS is a tuple (S ,→, I ,AP, L) where

• S is a set of states

• −→ ⊆ S × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

notation: s −→ s ′ instead of (s, s ′) ∈ −→

RT (ICS @ UIBK) Chapter 2 8/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Transition systems

A beverage vending machine

pay

selectsprite beer

states?, transitions?, initial states?

RT (ICS @ UIBK) Chapter 2 9/39

Transition systems

Atomic propositions?

pay

selectsprite beer

RT (ICS @ UIBK) Chapter 2 10/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Transition systems

The role of nondeterminism

here: nondeterminism is a feature!

• to model concurrency by interleaving
• no assumption about the relative speed of processes

• to model implementation freedom
• only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems
• use incomplete information

RT (ICS @ UIBK) Chapter 2 11/39

Transition systems

Executions

• execution % of TS: sequence of states

% = s0 s1 . . . sn . . .

such that
• si −→ si+1 for all 0 6 i ∈ IN
• s0 ∈ I

(w.l.o.g. consider only infinite executions)

• trace of an execution: sequence of sets of atomic propositions, i.e.,
trace(%) ∈ (2AP)ω

trace(%) = L(s0) L(s1) L(s2) L(s3) . . .

• Traces(TS): set of all traces of all executions of TS
it defines the observable behaviour of TS

RT (ICS @ UIBK) Chapter 2 12/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Transition systems

Example

RT (ICS @ UIBK) Chapter 2 13/39

Transition systems

Summary

transition systems 6= finite automata since

• there are no accept states

• set of states may be countably infinite
(but in this lecture: only finite sets of states)

• may have infinite branching

• non-determinism has a different role

⇒ transition systems are appropriate for reactive system behavior

RT (ICS @ UIBK) Chapter 2 14/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking of Linear Time Properties

Outline

Notations

Transition systems

Model Checking of Linear Time Properties

Regular Languages
Finite Automata
Büchi Automata
Generalized Büchi Automata

RT (ICS @ UIBK) Chapter 2 15/39

Model Checking of Linear Time Properties

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

this section

RT (ICS @ UIBK) Chapter 2 16/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking of Linear Time Properties

Requirements 6= Specification

requirements
• high-level description (consider scheduler for exclusive access)

• (the scheduler should be correct)
• no two clients get access at the same time
• the scheduler should be fair
• there is no deadlock

• what we observe from system: Traces(TS) ⊆ (2AP)ω

⇒ how to answer question “does system satisfy requirements”?
problem: to imprecise

⇒ we need requirements in a precise, i.e., mathematical specification

RT (ICS @ UIBK) Chapter 2 17/39

Model Checking of Linear Time Properties

Linear Time Properties

one main idea to specify requirements: describe allowed traces

• specification is set S ⊆ (2AP)ω (linear time property)

• system TS satisfies S iff every trace of TS is allowed w.r.t. S:

Traces(TS) ⊆ S
• model checking of linear time properties:

given Traces(TS) and S, answer Traces(TS) ⊆ S
⇒ precise formulation, no ambiguity

• upcoming problems
• how to specify sets S conveniently . . .
• . . . such that Traces(TS) ⊆ S can be decided

RT (ICS @ UIBK) Chapter 2 18/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking of Linear Time Properties

The requirements of model checking

essentially we need a mechanism to represent the set S(R) of allowed
traces for some requirement R conveniently

• possible classes: finite, regular, context-free, context-sensitive, . . .

• model checking requires checking Traces(TS) ⊆ S(R)
or equivalently: Traces(TS) ∩ S(¬R) = ∅

where ¬R describes forbidden traces

⇒ requirements on class of language
• closure under intersection
• emptyness decidable
• expressive enough to represent Traces(TS) and S(¬R)

• use regular languages, they are closed under all boolean operations

• possible representations of regular languages
• regular expressions
• non-recursive grammars
• finite automata

RT (ICS @ UIBK) Chapter 2 19/39

Regular Languages

Outline

Notations

Transition systems

Model Checking of Linear Time Properties

Regular Languages
Finite Automata
Büchi Automata
Generalized Büchi Automata

RT (ICS @ UIBK) Chapter 2 20/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

foundations in
this section

RT (ICS @ UIBK) Chapter 2 21/39

Regular Languages Finite Automata

Finite Automata

a nondeterministic finite automaton (NFA) A is a tuple (Q,Σ, δ, q0,F ) where:

• Q = {q0, . . . , qn} is a finite set of states

• Σ is an alphabet

• δ : Q× Σ→ 2Q is a transition function

• q0 is the initial state

• F ⊆ Q is a set of final (or: accepting) states

RT (ICS @ UIBK) Chapter 2 22/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Finite Automata

Language of an NFA

• NFA A = (Q,Σ, δ, q0,F ) and word w = A1 . . .An ∈ Σ∗

• run of w in A: finite sequence q0 q1 . . . qn such that

• qi
Ai+1−−−→ qi+1 for all 0 6 i < n

• run q0 q1 . . . qn is accepting iff qn ∈ F

• w ∈ Σ∗ is accepted by A iff there exists accepting run for w

• accepted language of A:

L(A) =
{
w ∈ Σ∗ | there exists an accepting run for w in A

}
• NFA A and A′ are equivalent iff L(A) = L(A′)
• language L is regular iff L = L(A) for some NFA A

RT (ICS @ UIBK) Chapter 2 23/39

Regular Languages Büchi Automata

Büchi Automata

A nondeterministic Büchi automaton (NBA) A is a tuple (Q,Σ, δ, q0,F ) where:

• Q = {q0, . . . , qn} is a finite set of states

• Σ is an alphabet

• δ : Q× Σ→ 2Q is a transition function

• q0 ∈ Q is the initial state

• F ⊆ Q is a set of final (or: accepting) states

q0

A

B

q1
B

q2

A

B

RT (ICS @ UIBK) Chapter 2 24/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Büchi Automata

Language of a NBA

• NBA A = (Q,Σ, δ, q0,F ) and word w = A1 . . .An . . . ∈ Σω

• run for w in A is an infinite sequence q0 q1 . . . qn . . . such that:

• qi
Ai+1−−−→ qi+1 for all i ∈ IN

• run q0 q1 . . . qn . . . is accepting iff

for infinitely many indices i : qi ∈ F

• w ∈ Σω is accepted by A iff there exists an accepting run for w

• accepted language of A:

L(A) =
{
w ∈ Σω | there exists an accepting run for w in A

}
• NBA A and A′ are equivalent iff L(A) = L(A′)
• language L is ω-regular iff L = L(A) for some NBA A

RT (ICS @ UIBK) Chapter 2 25/39

Regular Languages Generalized Büchi Automata

Generalized Büchi Automata

generalized Büchi automaton (GNBA) is tuple
A = (Q,Σ, δ, q0,F1, . . . ,Fk) where

• everything is like for NBAs except that

• there are multiple sets of final states F1, . . . ,Fk where each Fi ⊆ Q
• run q0 q1 . . . qn . . . is accepting iff for each 1 6 j 6 k there are

infinitely many indices i : qi ∈ Fj

• NBAs are GNBAs where k = 1

• each GNBA can be translated into equivalent NBA (with states
Q× {1, . . . ,max(1, k)})

RT (ICS @ UIBK) Chapter 2 26/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

GNBAs to specify requirements

Safety properties: (refutation by a finite prefix of an ω-word)

1. always at most one traffic light is showing green

2. green cannot be directly followed by red

Liveness properties: (refutation only by whole ω-word)

3. we will see green infinitely often

4. whenever we select sprite then later on we will get a sprite

• GNBAs are closed under union, intersection, and negation

⇒ many interesting properties can be expressed by GNBAs

RT (ICS @ UIBK) Chapter 2 27/39

Regular Languages Generalized Büchi Automata

GNBAs to specify requirements
R ¬R

1.

2.

3.

4.

RT (ICS @ UIBK) Chapter 2 28/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

Recall: requirements of model checking

• model checking requires checking Traces(TS) ∩ S(¬R) = ∅
where ¬R describes forbidden traces

⇒ requirements on class of language
• expressive enough to represent Traces(TS)
• closure under intersection
• emptyness decidable

RT (ICS @ UIBK) Chapter 2 29/39

Regular Languages Generalized Büchi Automata

Expressing Transition Systems as GNBAs

aim: for TS = (S ,→, I ,AP, L) construct ATS with L(ATS) = Traces(TS)

problems:

• labels/letters are at the states in TS, but on the transitions in GNBAs

• several initial states in TS, but only one initial state in GNBAs

solution:

• label A of transition system state corresponds to upcoming letter to
read in GNBA

• use states of TS as states of GNBA, but use new initial state

concrete: ATS = (S ] {q0}, 2AP, δ, q0) with δ defined as follows

• δ(s,A) = {s ′ | L(s) = A, s → s ′}
• δ(q0,A) = {s ′ | s ∈ I , L(s) = A, s → s ′}

RT (ICS @ UIBK) Chapter 2 30/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

Example

RT (ICS @ UIBK) Chapter 2 31/39

Regular Languages Generalized Büchi Automata

Soundness of ATS

Theorem

L(ATS) = Traces(TS)

RT (ICS @ UIBK) Chapter 2 32/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

GNBA for Intersection

aim: for Ai = (Qi ,Σ, δi , q0,i ,F1,i , . . . ,Fki ,i ) construct AA1∩A2 with
L(AA1∩A2) = L(A1) ∩ L(A2)

idea: simulate runs in A1 and A2 in parallel

• use cartesian product of states

• demand that all final states are visited infinitely often

concrete: AA1∩A2 = (Q,Σ, δ, q0,F
′
1, . . . ,F

′
k1
,F ′′1 , . . . ,F

′′
k2

) where

• Q = Q1 ×Q2

• q0 = (q0,1, q0,2)

• δ((q1, q2),A) = {(q′1, q′2) | q′1 ∈ δ1(q1,A), q′2 ∈ δ2(q2,A)}
• F ′j = Fj ,1 ×Q2 and F ′′j = Q1 × Fj ,2

RT (ICS @ UIBK) Chapter 2 33/39

Regular Languages Generalized Büchi Automata

Example: no direct switch from green to red

RT (ICS @ UIBK) Chapter 2 34/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

Soundness of AA1∩A2

Theorem

L(AA1∩A2) = L(A1) ∩ L(A2)

RT (ICS @ UIBK) Chapter 2 35/39

Regular Languages Generalized Büchi Automata

Checking Emptiness of GNBAs

let G be a graph (V ,E ) with nodes V and edges E

• set C ⊆ V is a cycle of G iff
for all v1, v2 ∈ C there is a non-empty path from v1 to v2

• a strongly connected component (SCC) is a maximal cycle
(C is SCC iff both C is cycle and C ′ ⊃ C implies C ′ is not a cycle)

• remarks:
• two SCCs C1 and C2 are either disjoint or identical
• the set of SCCs of a graph can be determined in linear time (Kosaraju)

RT (ICS @ UIBK) Chapter 2 36/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

Algorithm for Checking L(A) = ∅ for GNBA A
A = (Q,Σ, δ, q0,F1, . . . ,Fk) accepts at least one ω-word

• iff there is accepting run q0 q1 q2 . . . of A
• iff there is run q0 q1 q2 . . . where for each Fi there is some qf ,i ∈ Fi

that occurs infinitely often

• iff in the graphical representation of A there is a path from q0 to
some SCC containing all qf ,i ’s

• iff in the graphical representation of A there is a path from q0 to
some SCC containing at least one final state of each Fi

⇒ compute SCCs of A (linear time, Kosaraju’s algorithm)
and perform reachability-analysis from q0 (linear time, depth first search)

• if no SCC with final states from each Fi reachable from q0: L(A) = ∅
• otherwise, obtain path from q0 to q1 ∈ SCC and non-empty path

from q1 to q1 traversing all nodes in the SCC with corresponding
words w01 and w11

⇒ w01w
ω
11 ∈ L(A)

RT (ICS @ UIBK) Chapter 2 37/39

Regular Languages Generalized Büchi Automata

Example (GNBA where input letters are omitted)

RT (ICS @ UIBK) Chapter 2 38/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Regular Languages Generalized Büchi Automata

Summary

• model checking for linear time properties:
• specify allowed traces S(R) or forbidden traces S(¬R)
• decide

Traces(T ) ⊆ S(R) or Traces(TS) ∩ S(¬R) = ∅

• NFA over finite words → (G)NBA over infinite words
(regular languages → regular ω-languages)

• GNBAs can encode several requirements (allowed / forbidden traces)

• GNBAs can encode transition systems

• GNBAs are closed under Boolean operations (here: only intersection)

• emptyness of GNBAs is decidable

RT (ICS @ UIBK) Chapter 2 39/39

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Notations
	Transition systems
	Model Checking of Linear Time Properties
	Regular Languages
	Finite Automata
	Büchi Automata
	Generalized Büchi Automata


