Introduction to Model Checking (VO) WS 2007/2008 LVA 703503

First name:	
Last name:	
Matriculation number:	

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Do *not* write with a pencil or a red pen. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	12	
2	24	
3	15	
4	19	
Σ	70	
Grade		

Matriculation number

Exercise 1 (12 points)

First name

Each correct answer is worth four points. A wrong answer results in zero points. Giving no answer is worth one point.

Last name

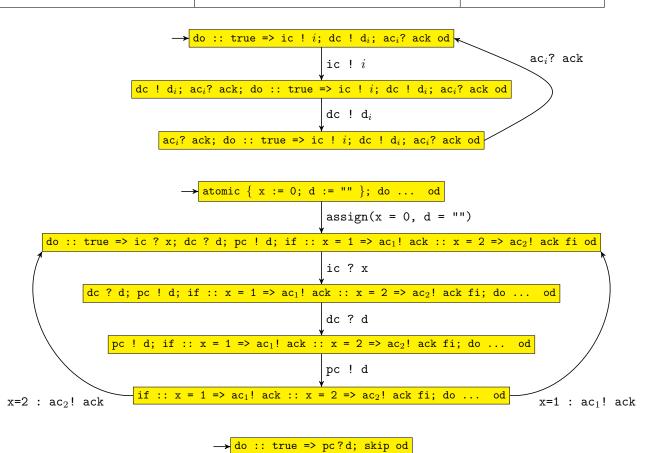
	Yes	No
The CTL formula $(AGAF request) \Rightarrow (AGAF response)$ is equivalent to the LTL formula $(GF request) \Rightarrow (GF response)$. $\longrightarrow \varnothing \longrightarrow \{request\}$		✓
Every language $L \subseteq \Sigma^{\omega}$ can be recognized by some NBA. (We have the result as for NFAs: regular ω -languages do not cover all ω -languages. A formal prove can be done as follows: For all NBAs \mathcal{A} we know that if $\mathcal{L}(\mathcal{A}) \neq \emptyset$ then by the non-emptyness check we figure out a word $w = vu^{\omega} \in \mathcal{L}(\mathcal{A})$ for finite words v, u . Hence, the language $L = \{\pi\} \in \{0-9,.\}^{\omega}$ cannot be accepted by an NBA since π is not a rational number.)		✓
Emptiness of $\mathcal{L}(\mathcal{A})$ for some GNBA \mathcal{A} can directly be decided using an SCC-based analysis, without first translating \mathcal{A} into some NBA. $(\mathcal{L}(\mathcal{A}) \neq \emptyset)$ iff there is an SCC of \mathcal{A} that is reachable from the initial state and that contains a state from each set F_i of final states)	√	

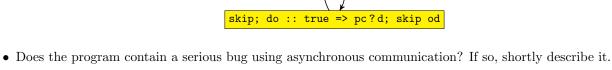
Exercise 2 (21 + 3 points)

Consider the following nanoPromela program which has two clients $(i \in \{1, 2\})$ which send their data via a scheduler to a printer. After a clients data d_i is delivered at the printer, client i gets an acknowledgement.

• Construct the channel-system for the nanoPromela program.

First name Last name Matriculation number





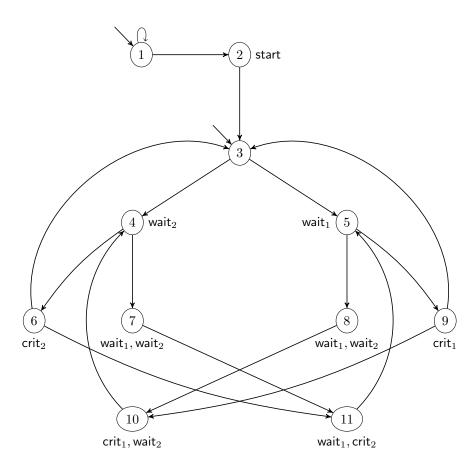
• Does the program contain a serious bug using asynchronous communication? If so, shortly describe it.

Consider the following situation. Client 1 sends its id which is read by the scheduler. Then client 2 sends both id and data. Then client 1 sends its data, but the scheduler reads the data of client 2, sends it to the printer, but then falsely sends the acknowledgement to client 1.

	7
	-

First name	Last name	Matriculation number

Exercise 3 (15 points)



Consider the above transition system TS of a mutual exclusion protocol and the following CTL*-formula Φ .

$$\Phi = (\mathsf{A}\left((\mathsf{F}\,\mathsf{G}\,\neg\mathsf{start}) \land \mathsf{A}\left(\neg\mathsf{wait}_1 \lor \mathsf{F}\,\mathsf{crit}_1\right)\right)) \land \mathsf{A}\,\mathsf{F}\left(\mathsf{crit}_1 \lor \mathsf{crit}_2\right)$$

Does $TS \models \Phi$ hold? Justify your answer by performing CTL^* -model checking, and write down $Sat(\Psi)$ for every state-subformula Ψ of Φ . Whenever one computes a set $Sat(A\varphi)$, additionally write down the corresponding LTL-formula φ' that is checked. However, it is not necessary to perform LTL-model checking explicitly.

- $Sat(start) = \{2\}$
- $Sat(wait_1) = \{5, 7, 8, 11\}$
- $Sat(crit_1) = \{9, 10\}$
- $Sat(crit_2) = \{6, 11\}$
- $Sat(A \neg wait_1 \lor F \operatorname{crit}_1) = \{1 11\}$. This step involves LTL model checking of the formula $\neg wait_1 \lor F \operatorname{crit}_1$. Alternatively one could have computed $Sat(\neg wait_1) = \{1 4, 6, 9, 10\}$ and then perform LTL model checking for the formula $a \lor F \operatorname{crit}_1$ where a is a new proposition which is valid in states $Sat(\neg wait_1)$.
- $Sat(A((FG\neg start) \land A(\neg wait_1 \lor F crit_1))) = \{1-11\}$. This step involves LTL model checking of the formula $A((FG\neg start) \land b)$ where b is a new proposition that is valid in states $Sat(A(\neg wait_1 \lor F crit_1))$, i.e., which is always valid.

First name	Last name	Matriculation number

Alternatively one could have computed $Sat(\neg \mathsf{start}) = \{1, 3-11\}$ and then perform LTL model checking for the formula $\mathsf{A}((\mathsf{F}\,\mathsf{G}\,c) \land b)$ where b is as above and c is another new proposition which is valid in states $Sat(\neg \mathsf{start})$.

- $Sat(AF(crit_1 \lor crit_2)) = \{2-11\}$. This step involves LTL model checking of the formula $F(crit_1 \lor crit_2)$. Alternatively one could have computed $Sat(crit_1 \lor crit_2) = \{6, 9-11\}$ and then perform LTL model checking for the formula Fd where d is a new proposition which is valid in states $Sat(crit_1 \lor crit_2)$.
- $Sat(\Phi) = \{1 11\} \cap \{2 11\} = \{2 11\}$

Since state 1 is initial and $1 \notin Sat(\Phi)$ we conclude $TS \not\models \Phi$.

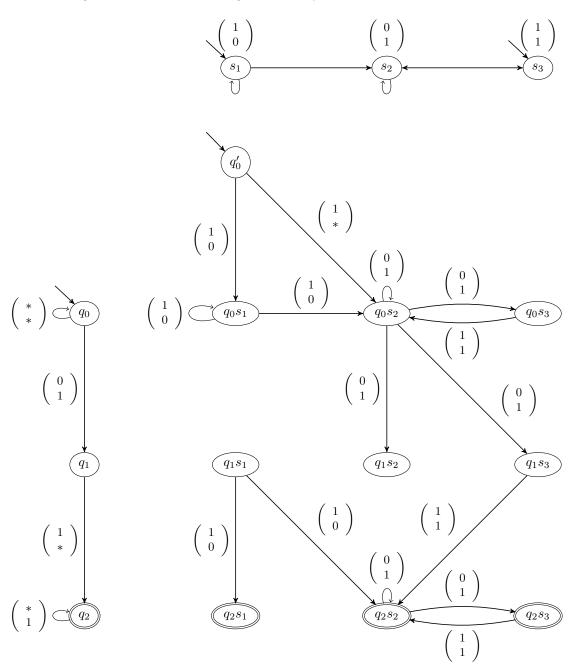
5

First name	Last name	Matriculation number

6

Exercise 4 (18 + 1 points)

Consider the following NBA \mathcal{A} and the following transition system TS.



- Construct the NBA $\mathcal{B} = TS \otimes \mathcal{A}$ which accepts $\mathcal{L}(TS) \cap \mathcal{L}(\mathcal{A})$.
- Is $\mathcal{L}(\mathcal{B}) = \emptyset$? If not, then provide a word which is contained in $\mathcal{L}(\mathcal{B})$.

$$\left(\left(\begin{array}{c}1\\1\end{array}\right)\left(\begin{array}{c}0\\1\end{array}\right)\right)^{\omega}\in\mathcal{L}(\mathcal{B}).$$