First name:

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
$1(\mathrm{i})$	12	
$1(\mathrm{ii})$	12	
2	18	
3	19	
4	9	
Σ	70	
Grade		

Exercise $1(12+12$ points $)$

Consider the following property.
Between every two neighboring occurrences of "green", "red" is valid all the time strictly in between.
One might formulate this property as the following LTL-formula φ.

$$
\varphi=\neg F(\text { green } \wedge \neg(\text { red } U \text { green }))
$$

(i) φ is equivalent to the formula $\psi=\neg($ true $U($ green $\wedge \neg($ red U green $)))$. Construct parts of the GNBA for ψ using the improved translation from LTL to GNBAs.

- $c l^{\prime}(\psi)=$ green, red,
- $\left(c_{1}, \ldots\right)^{T} \in \delta\left(\left(b_{1}, \ldots\right)^{T},\left(d_{1}, d_{2}\right)^{T}\right)$ iff
- $\left(c_{1}, \ldots\right)^{T} \in \delta\left(q_{0},\left(d_{1}, d_{2}\right)^{T}\right)$ iff
(ii) φ does not correspond to the textual property (\star). Write down an infinite word w that distinguishes φ from (\star). Moreover, write down an LTL-formula χ which corresponds to (\star).

Exercise 2 (18 points)

Consider the following transition system $T S$.

Perform CTL*-model checking for the formula

$$
\Phi=\mathrm{E}(\mathrm{X}(a \wedge \neg b) \wedge \mathrm{XA}(b \cup \mathrm{G} a))
$$

Here, the sets $S a t(\Psi)$ should be indicated for every non-atomic state-subformula Ψ of Φ. Note that the subformula $a \wedge \neg b$ of Φ should be seen as a state-formula. It is not necessary to perform the LTL-model checking explicitly, but write down each LTL-formula that is checked.

Exercise 3 (19 points)

Consider the following channel system $\left[P_{0} \mid P_{1}\right]$ which models a mutual exclusion protocol of Pnueli. Here, communication is done via a shared variable x.

Complete the following transition system where the initial state indicates (in red) the representation of states.

Exercise 4 (9 points)

Each correct answer is worth 3 points. A wrong answer results in zero points. Giving no answer is worth 1 point.

	Yes	No
There is some GNBA \mathcal{A} such that there is no NBA \mathcal{B} with $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{B})$.		
When checking $T S \models \varphi$ for some LTL formula φ, as intermediate result one constructs a GNBA which accepts $\mathcal{L}(\varphi)$.		
If one wants to compute the intersection of NBAs then one can use a similar construction as for GNBAs: for $\mathcal{A}_{i}=\left(\mathcal{Q}_{i}, \Sigma, q_{0, i}, \delta_{i}, F_{i}\right)$ return $\mathcal{A}=\left(\mathcal{Q}_{1} \times \mathcal{Q}_{2}, \Sigma,\left(q_{0,1}, q_{0,2}\right), \delta, F_{1} \times F_{2}\right)$ where δ is defined as in the intersection automaton for GNBAs.		

