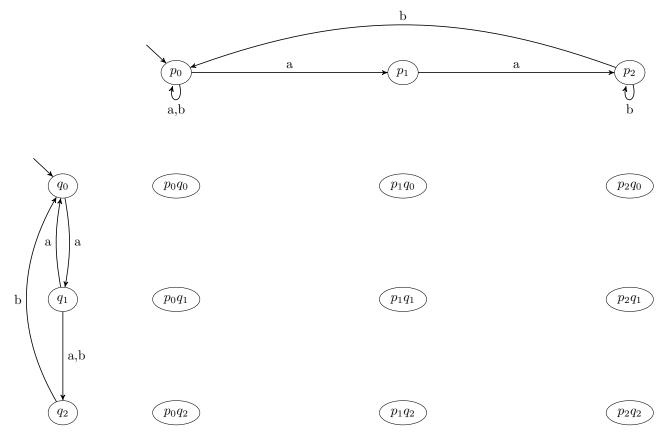
Introduction to Model	Checking (VO)	WS 2008	5/2009 LVA 70	3503

First name:

Last name:

Matriculation number:


- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1	21	
2	20	
3	20	
4	9	
Σ	70	
Grade		

Exercise 1 (14+5+2 points)

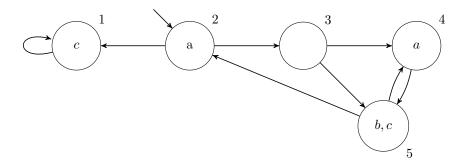
Consider the GNBAs $\mathcal{A}_1 = (\{p_0, p_1, p_2\}, \Sigma, p_0, \delta_1, \{p_0, p_2\}, \{p_1\})$ and $\mathcal{A}_2 = (\{q_0, q_1, q_2\}, \Sigma, q_0, \delta_2, \{q_0, q_1\}).$

(i) Construct the GNBA \mathcal{A} for the intersection of \mathcal{A}_1 and \mathcal{A}_2 .

(ii) Write down the final states set(s) of \mathcal{A} explicitly.

(iii) Is $\mathcal{L}(\mathcal{A}) = \emptyset$? If not, provide a word which is contained in $\mathcal{L}(\mathcal{A})$.

Exercise 2 (20 points)


Consider the following nanoPromela statement.

```
do
    :: a => if :: d => e ! f fi ; g ! h
    :: b => i ! j ; if :: k => l ! m fi
    :: c => skip
od
```

Formally derive all transitions that are possible from this initial statement. You may use abbreviations like "do \dots od" and "if \dots fi".

Exercise 3 (20 points)

Consider the following transition system TS.

Perform CTL*-model checking for the formula

$$\Phi = (\mathsf{A}((\mathsf{E} \mathsf{X} a) \Rightarrow \mathsf{X} a)) \land (\mathsf{E}(\neg a \land \neg b) \mathsf{U} c)$$

Here, the sets $Sat(\Psi)$ should be indicated for every non-atomic state-subformula Ψ of Φ . Note that the subformula $\neg a \land \neg b$ of Φ should be seen as a state-formula. It is not necessary to perform the LTL-model checking explicitly, but write down each LTL-formula that is checked.

Exercise 4 (9 points)

Each correct answer is worth 3 points. A wrong answer results in zero points (for that question, not for the whole exercise). Giving no answer is worth 1 point.

	Yes	No
$F(a U b) \equiv \neg E G \neg b.$		
The LTL formula $F(a \cup X(b \cup Xa))$ describes the following property: Every path contains two <i>a</i> 's with a <i>b</i> in between.		
The number of states of the GNBA \mathcal{A}_{φ} for some LTL-formula φ using the improved translation is $1 + 2^n$ where <i>n</i> is the number of temporal operators in φ .		