Introduction to Model Chec	king (VO)	WS 2008/2009	LVA 703503

First name: _____

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1(i)	12	
1(ii)	12	
2	18	
3	19	
4	9	
Σ	70	
Grade		

Exercise 1 (12 + 12 points)

Consider the following property.

Between every two neighboring occurrences of "green", "red" is valid all the time strictly in between. (\star)

One might formulate this property as the following LTL-formula φ .

$$\varphi = \neg \mathsf{F}(\mathsf{green} \land \neg(\mathsf{red} \, \mathsf{U} \, \mathsf{green}))$$

- (i) φ is equivalent to the formula $\psi = \neg(\text{true U}(\text{green} \land \neg(\text{red U}\text{green})))$. Construct parts of the GNBA for ψ using the *improved* translation from LTL to GNBAs.
 - $cl'(\psi) = \text{green}, \text{red U green}, \text{true U (green } \land \neg(\text{red U green}))$
 - $(c_1, \ldots, c_4)^T \in \delta((b_1, \ldots, b_4)^T, (d_1, d_2)^T)$ iff $d_1 \Leftrightarrow c_1, d_2 \Leftrightarrow c_2, b_3 \Leftrightarrow (b_1 \lor (b_2 \land c_3))$, and $b_4 \Leftrightarrow (b_1 \land \neg b_3) \lor c_4$
 - $(c_1, \ldots, c_4)^T \in \delta(q_0, (d_1, d_2)^T)$ iff $d_1 \Leftrightarrow c_1, d_2 \Leftrightarrow c_2$, and $\neg c_4$.
- (ii) φ does not correspond to the textual property (*). Write down an infinite word w that distinguishes φ from (*). Moreover, write down an LTL-formula χ which corresponds to (*).

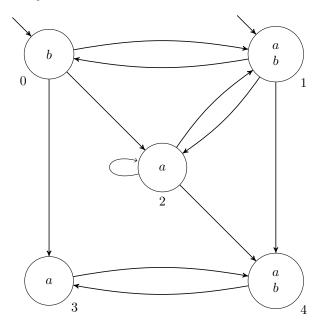
There are two reasons why φ does not correspond to (\star) .

- The timing of the formula φ₁ = green ∧ ¬(red U green) does not work. Whenever green is satisfied then obviously, red U green is satisfied and hence ¬(red U green) is not satisfied. Thus, φ₁ is unsatisfiable and therefore φ is a tautology. Hence, w = {green} Ø {green} ... does not satisfy (*) but it satisfies φ.
- The second problem (if one fixes the timing) is that φ does not take into account that green might occur only finitely often. A corrected version is

 $\chi = \neg \mathsf{F} (\mathsf{green} \land \mathsf{X} \mathsf{F} \mathsf{green} \land \mathsf{X} \neg (\mathsf{red} \mathsf{U} \mathsf{green})) \equiv \mathsf{G} (\mathsf{green} \Rightarrow \mathsf{X} (\mathsf{G} \neg \mathsf{green} \lor (\mathsf{red} \mathsf{U} \mathsf{green}))).$

Exercise 2 (18 points)

Consider the following transition system TS.



Perform CTL*-model checking for the formula

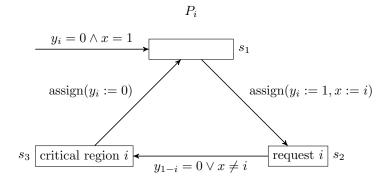
$$\Phi = \mathsf{E}\left(\mathsf{X}\left(a \land \neg b\right) \land \mathsf{X} \mathsf{A}\left(b \, \mathsf{U} \, \mathsf{G} \, a\right)\right)$$

Here, the sets $Sat(\Psi)$ should be indicated for every non-atomic state-subformula Ψ of Φ . Note that the subformula $a \wedge \neg b$ of Φ should be seen as a state-formula. It is not necessary to perform the LTL-model checking explicitly, but write down each LTL-formula that is checked.

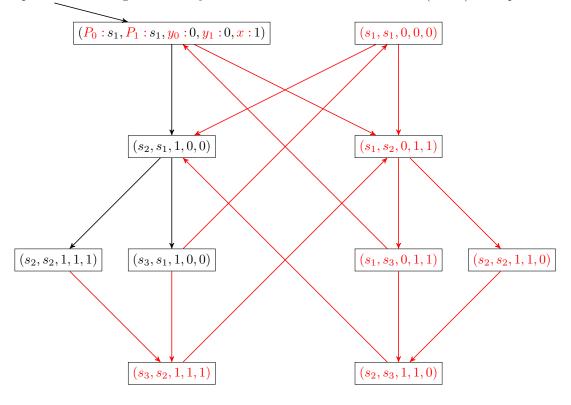
- Eliminating A yields the formula $\Phi' = \mathsf{E}(\mathsf{X}(a \land \neg b) \land \mathsf{X} \neg \mathsf{E} \neg (b \cup \mathsf{G} a)).$
- $Sat(\neg b) = \{2, 3\}$
- $Sat(a \land \neg b = \Psi_1) = \{2, 3\}$
- $Sat(\mathsf{E} \neg (b \mathsf{U} \mathsf{G} a) = \Psi_2) = \{0, 1, 2\}$ (LTL model checking of formula $\neg (b \mathsf{U} \mathsf{G} a)$)
- $Sat(\neg \Psi_2 = \Psi_3) = \{3, 4\}$
- $Sat(\Phi') = \{0, 4\}$ (LTL model checking of formula $X a_{\Psi_1} \wedge X a_{\Psi_3}$)
- $\Rightarrow TS \not\models \Phi$

Exercise 3 (19 points)

Consider the following channel system $[P_0 | P_1]$ which models a mutual exclusion protocol of Pnueli. Here, communication is done via a shared variable x.



Complete the following transition system where the initial state indicates (in red) the representation of states.



Exercise 4 (9 points)

Each correct answer is worth 3 points. A wrong answer results in zero points. Giving no answer is worth 1 point.

	Yes	No
There is some GNBA \mathcal{A} such that there is no NBA \mathcal{B} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$.		\checkmark
When checking $TS \models \varphi$ for some LTL formula φ , as intermediate result one constructs a GNBA which accepts $\mathcal{L}(\varphi)$.		✓
If one wants to compute the intersection of NBAs then one can use a similar construction as for GNBAs: for $\mathcal{A}_i = (\mathcal{Q}_i, \Sigma, q_{0,i}, \delta_i, F_i)$ return $\mathcal{A} = (\mathcal{Q}_1 \times \mathcal{Q}_2, \Sigma, (q_{0,1}, q_{0,2}), \delta, F_1 \times F_2)$ where δ is defined as in the intersection automaton for GNBAs.		✓