First name:

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
$1(\mathrm{i})$	12	
$1(\mathrm{ii})$	12	
2	18	
3	19	
4	9	
Σ	70	
Grade		

Exercise $1(12+12$ points $)$

Consider the following property.
Between every two neighboring occurrences of "green", "red" is valid all the time strictly in between.
One might formulate this property as the following LTL-formula φ.

$$
\varphi=\neg F(\text { green } \wedge \neg(\text { red } U \text { green }))
$$

(i) φ is equivalent to the formula $\psi=\neg(\operatorname{true} \mathrm{U}($ green $\wedge \neg($ red U green $))$). Construct parts of the GNBA for ψ using the improved translation from LTL to GNBAs.

- $c l^{\prime}(\psi)=$ green, red, red U green, true $\mathrm{U}($ green $\wedge \neg($ red U green $))$
- $\left(c_{1}, \ldots, c_{4}\right)^{T} \in \delta\left(\left(b_{1}, \ldots, b_{4}\right)^{T},\left(d_{1}, d_{2}\right)^{T}\right)$ iff $d_{1} \Leftrightarrow c_{1}, d_{2} \Leftrightarrow c_{2}, b_{3} \Leftrightarrow\left(b_{1} \vee\left(b_{2} \wedge c_{3}\right)\right)$, and $b_{4} \Leftrightarrow$ $\left(b_{1} \wedge \neg b_{3}\right) \vee c_{4}$
- $\left(c_{1}, \ldots, c_{4}\right)^{T} \in \delta\left(q_{0},\left(d_{1}, d_{2}\right)^{T}\right)$ iff $d_{1} \Leftrightarrow c_{1}, d_{2} \Leftrightarrow c_{2}$, and $\neg c_{4}$.
(ii) φ does not correspond to the textual property (\star). Write down an infinite word w that distinguishes φ from (\star). Moreover, write down an LTL-formula χ which corresponds to (\star).
There are two reasons why φ does not correspond to (\star).
- The timing of the formula $\varphi_{1}=$ green $\wedge \neg($ red U green $)$ does not work. Whenever green is satisfied then obviously, red U green is satisfied and hence \neg (red U green $)$ is not satisfied. Thus, φ_{1} is unsatisfiable and therefore φ is a tautology. Hence, $w=\{$ green $\} \varnothing\{$ green $\} \ldots$ does not satisfy (\star) but it satisfies φ.
- The second problem (if one fixes the timing) is that φ does not take into account that green might occur only finitely often. A corrected version is

$$
\chi=\neg F(\text { green } \wedge X F \text { green } \wedge X \neg(\text { red } U \text { green })) \equiv G(\text { green } \Rightarrow X(G \neg \text { green } \vee(\text { red } U \text { green })))
$$

Exercise 2 (18 points)

Consider the following transition system $T S$.

Perform CTL*-model checking for the formula

$$
\Phi=\mathrm{E}(\mathrm{X}(a \wedge \neg b) \wedge \mathrm{XA}(b \cup \mathrm{G} a))
$$

Here, the sets $S a t(\Psi)$ should be indicated for every non-atomic state-subformula Ψ of Φ. Note that the subformula $a \wedge \neg b$ of Φ should be seen as a state-formula. It is not necessary to perform the LTL-model checking explicitly, but write down each LTL-formula that is checked.

- Eliminating A yields the formula $\Phi^{\prime}=\mathrm{E}(\mathrm{X}(a \wedge \neg b) \wedge \mathrm{X} \neg \mathrm{E} \neg(b \cup \mathrm{G} a))$.
- $\operatorname{Sat}(\neg b)=\{2,3\}$
- $\operatorname{Sat}\left(a \wedge \neg b=\Psi_{1}\right)=\{2,3\}$
- $\operatorname{Sat}\left(\mathrm{E} \neg(b \cup \mathrm{G} a)=\Psi_{2}\right)=\{0,1,2\}$ (LTL model checking of formula $\left.\neg(b \cup \mathrm{G} a)\right)$
- $\operatorname{Sat}\left(\neg \Psi_{2}=\Psi_{3}\right)=\{3,4\}$
- $\operatorname{Sat}\left(\Phi^{\prime}\right)=\{0,4\}$ (LTL model checking of formula $\left.X a_{\Psi_{1}} \wedge X a_{\Psi_{3}}\right)$
$\Rightarrow T S \not \vDash \Phi$

Exercise 3 (19 points)

Consider the following channel system $\left[P_{0} \mid P_{1}\right]$ which models a mutual exclusion protocol of Pnueli. Here, communication is done via a shared variable x.

Complete the following transition system where the initial state indicates (in red) the representation of states.

Exercise 4 (9 points)

Each correct answer is worth 3 points. A wrong answer results in zero points. Giving no answer is worth 1 point.

	Yes	No
There is some GNBA \mathcal{A} such that there is no NBA \mathcal{B} with $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{B})$.		\checkmark
When checking $T S \models \varphi$ for some LTL formula φ, as intermediate result one constructs a GNBA which accepts $\mathcal{L}(\varphi)$.	\checkmark	
If one wants to compute the intersection of NBAs then one can use a similar construction as for GNBAs: for \mathcal{A} where δ is defined as in the intersection automaton for GNBAs.		

