Introduction to Model Checkir	ng (VO)	WS 2009/2010	LVA 703503

First name:

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1	20	
2	20	
3	21	
4	9	
Σ	70	
Grade		

Exercise 1 (14 + 3 + 3 points)

Consider the GNBAs $\mathcal{A}_1 = (\{p_0, p_1, p_2\}, \Sigma, p_0, \delta_1, \{p_0, p_2\}, \{p_1\})$ and $\mathcal{A}_2 = (\{q_0, q_1, q_2\}, \Sigma, q_0, \delta_2, \{q_2\}).$

(i) Construct the GNBA \mathcal{A} for the intersection of \mathcal{A}_1 and \mathcal{A}_2 .

(ii) Write down the final states set(s) of \mathcal{A} explicitly.

(iii) Is $\mathcal{L}(\mathcal{A}) = \emptyset$? If not, provide a word which is contained in $\mathcal{L}(\mathcal{A})$.

Exercise 2 (20 points)

Consider the following channel system [Slot | Beer-Button | Sprite-Button | Controller | Output] which models a distributed beverage vending machine. Here, communication is done via three channels where the capacity of the *money*-channel is 1, and the capacity of the *select*- and *serve*-channel is 0.

Complete the following transition system where a state (c_i, x, c) represents the current location in the controller c_i , the value x of the variable d of the controller, and the value c of the money-channel. You do not have to label transitions.

Exercise 3 (6 + 15 points)

Consider the following formula:

$$\varphi = \neg(\operatorname{true} \mathsf{U}\left(\mathsf{red} \land \neg(\neg\mathsf{green} \land \mathsf{X}\left(\neg\mathsf{green} \:\mathsf{U}\:\neg\mathsf{red}\right))\right)$$

The following exercises can be done independently!

(i) Construct a simplified formula ψ with $\varphi \equiv \psi$ by introducing operators like $\mathsf{F}, \mathsf{G}, \lor, \Rightarrow, \ldots$ Then try to formulate the meaning of ψ in words (German or English).

(ii) Construct the automaton for φ using the improved translation.

 $\mathcal{A}_{\varphi} = (\{q_0\} \uplus 2^5, 2^2, q_0, \delta, F_1, F_2)$ where

• The reduced Fischer Ladner closure is

 $cl'(\varphi)=\mathrm{red}, \mathrm{green},$

- $(c_1, \ldots, c_5)^T \in \delta(q_0, (d_1, d_2)^T)$ iff
- $(c_1, \ldots, c_5)^T \in \delta((b_1, \ldots, b_5)^T, (d_1, d_2)^T)$ iff
- $F_1 = \{(b_1, \dots, b_5)^T \mid$ $F_2 = \{(b_1, \dots, b_5)^T \mid$

Compute the number of direct preceding states of state $(1, 0, 0, 1, 1)^T$.

Exercise 4 (9 points)

Give an algorithm which decides for two LTL formulas φ and ψ whether $\mathcal{L}(\varphi) = \mathcal{L}(\psi)$. Prove the correctness.