First name:

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1	20	
2	20	
3	21	
4	9	
Σ	70	
Grade		

Exercise $1(14+3+3$ points)

Consider the GNBAs $\mathcal{A}_{1}=\left(\left\{p_{0}, p_{1}, p_{2}\right\}, \Sigma, p_{0}, \delta_{1},\left\{p_{0}, p_{2}\right\},\left\{p_{1}\right\}\right)$ and $\mathcal{A}_{2}=\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma, q_{0}, \delta_{2},\left\{q_{2}\right\}\right)$.
(i) Construct the GNBA \mathcal{A} for the intersection of \mathcal{A}_{1} and \mathcal{A}_{2}.

(ii) Write down the final states set(s) of \mathcal{A} explicitly.
(iii) Is $\mathcal{L}(\mathcal{A})=\varnothing$? If not, provide a word which is contained in $\mathcal{L}(\mathcal{A})$.

Exercise 2 (20 points)

Consider the following channel system [Slot \| Beer-Button \| Sprite-Button | Controller \| Output] which models a distributed beverage vending machine. Here, communication is done via three channels where the capacity of the money-channel is 1 , and the capacity of the select- and serve-channel is 0 .

Complete the following transition system where a state $\left(c_{i}, x, c\right)$ represents the current location in the controller c_{i}, the value x of the variable d of the controller, and the value c of the money-channel. You do not have to label transitions.

Exercise 3 ($6+15$ points)

Consider the following formula:

$$
\varphi=\neg(\text { true } \mathrm{U}(\text { red } \wedge \neg(\neg \text { green } \wedge \mathrm{X}(\neg \text { green } \mathrm{U} \neg \text { red })))
$$

The following exercises can be done independently!
(i) Construct a simplified formula ψ with $\varphi \equiv \psi$ by introducing operators like $\mathrm{F}, \mathrm{G}, \mathrm{V}, \Rightarrow$, .. Then try to formulate the meaning of ψ in words (German or English).
(ii) Construct the automaton for φ using the improved translation.
$\mathcal{A}_{\varphi}=\left(\left\{q_{0}\right\} \uplus 2^{5}, 2^{2}, q_{0}, \delta, F_{1}, F_{2}\right)$ where

- The reduced Fischer Ladner closure is

$$
c l^{\prime}(\varphi)=\text { red, green }
$$

- $\left(c_{1}, \ldots, c_{5}\right)^{T} \in \delta\left(q_{0},\left(d_{1}, d_{2}\right)^{T}\right)$ iff
- $\left(c_{1}, \ldots, c_{5}\right)^{T} \in \delta\left(\left(b_{1}, \ldots, b_{5}\right)^{T},\left(d_{1}, d_{2}\right)^{T}\right)$ iff
- $F_{1}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T} \mid\right.$
$F_{2}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T} \mid\right.$

Compute the number of direct preceding states of state $(1,0,0,1,1)^{T}$.

Exercise 4 (9 points)

Give an algorithm which decides for two LTL formulas φ and ψ whether $\mathcal{L}(\varphi)=\mathcal{L}(\psi)$. Prove the correctness.

