First name:

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1	20	
2	20	
3	21	
4	9	
Σ	70	
Grade		

Exercise $1(14+3+3$ points)

Consider the GNBAs $\mathcal{A}_{1}=\left(\left\{p_{0}, p_{1}, p_{2}\right\}, \Sigma, p_{0}, \delta_{1},\left\{p_{0}, p_{2}\right\},\left\{p_{1}\right\}\right)$ and $\mathcal{A}_{2}=\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma, q_{0}, \delta_{2},\left\{q_{2}\right\}\right)$.
(i) Construct the GNBA \mathcal{A} for the intersection of \mathcal{A}_{1} and \mathcal{A}_{2}.

(ii) Write down the final states set(s) of \mathcal{A} explicitly.
$F_{1}=\left\{p_{0} q_{0}, p_{0} q_{1}, p_{0} q_{2}, p_{2} q_{0}, p_{2} q_{1}, p_{2} q_{2}\right\}, F_{2}=\left\{p_{1} q_{0}, p_{1} q_{1}, p_{1} q_{2}\right\}$, and $F_{3}=\left\{p_{0} q_{2}, p_{1} q_{2}, p_{2} q_{2}\right\}$.
(iii) Is $\mathcal{L}(\mathcal{A})=\varnothing$? If not, provide a word which is contained in $\mathcal{L}(\mathcal{A})$. $(\mathrm{a} \text { a b b c a b })^{\omega} \in \mathcal{L}(\mathcal{A})$.

Exercise 2 (20 points)

Consider the following channel system [Slot| Beer-Button \| Sprite-Button | Controller \| Output] which models a distributed beverage vending machine. Here, communication is done via three channels where the capacity of the money-channel is 1 , and the capacity of the select- and serve-channel is 0 .

Complete the following transition system where a state $\left(c_{i}, x, c\right)$ represents the current location in the controller c_{i}, the value x of the variable d of the controller, and the value c of the money-channel. You do not have to label transitions.

Exercise $3(6+15$ points)

Consider the following formula:

$$
\varphi=\neg(\text { true } \mathrm{U}(\text { red } \wedge \neg(\neg \text { green } \wedge \mathrm{X}(\neg \text { green } \mathrm{U} \neg \text { red })))
$$

The following exercises can be done independently!
(i) Construct a simplified formula ψ with $\varphi \equiv \psi$ by introducing operators like $\mathrm{F}, \mathrm{G}, \mathrm{V}, \Rightarrow, \ldots$ Then try to formulate the meaning of ψ in words (German or English).

$$
\begin{aligned}
\varphi & \equiv \neg(\mathrm{F}(\text { red } \wedge \neg(\neg \text { green } \wedge \mathrm{X}(\neg \text { green } \mathrm{U} \neg \text { red }))) \\
& \equiv \mathrm{G} \neg(\text { red } \wedge \neg(\neg \text { green } \wedge \mathrm{X}(\neg \text { green } \mathrm{U} \neg \text { red }))) \\
& \equiv \mathrm{G}(\text { red } \Rightarrow(\neg \text { green } \wedge \mathrm{X}(\neg \text { green } \mathrm{U} \neg \text { red }))) \\
& \equiv \mathrm{G}(\text { red } \Rightarrow(\neg \text { green } \wedge \mathrm{F} \neg \text { red })) \\
& \equiv G(\neg \text { red } \vee \neg \text { green }) \wedge G F \neg \text { red }
\end{aligned}
$$

Green and red do not occur at the same time and infinitely often it is not red.
(ii) Construct the automaton for φ using the improved translation.
$\mathcal{A}_{\varphi}=\left(\left\{q_{0}\right\} \uplus 2^{5}, 2^{2}, q_{0}, \delta, F_{1}, F_{2}\right)$ where

- The reduced Fischer Ladner closure is

$$
c l^{\prime}(\varphi)=\text { red, green }, \underbrace{\neg \text { green } \mathrm{U} \neg \text { red }}_{\varphi_{3}}, \underbrace{X \varphi_{3}}_{\varphi_{4}}, \underbrace{\operatorname{true} \mathrm{U}\left(\text { red } \wedge \neg\left(\neg \text { green } \wedge \varphi_{4}\right)\right)}_{\varphi_{5}},
$$

- $\left(c_{1}, \ldots, c_{5}\right)^{T} \in \delta\left(q_{0},\left(d_{1}, d_{2}\right)^{T}\right)$ iff $\left(c_{1} \Leftrightarrow d_{1}\right) \wedge\left(c_{2} \Leftrightarrow d_{2}\right) \wedge \neg c_{5}$
- $\left(c_{1}, \ldots, c_{5}\right)^{T} \in \delta\left(\left(b_{1}, \ldots, b_{5}\right)^{T},\left(d_{1}, d_{2}\right)^{T}\right)$ iff $\left(c_{1} \Leftrightarrow d_{1}\right) \wedge\left(c_{2} \Leftrightarrow d_{2}\right) \wedge\left(b_{3} \Leftrightarrow\left(\neg b_{1} \vee\left(\neg b_{2} \wedge c_{3}\right)\right)\right) \wedge\left(b_{4} \Leftrightarrow\right.$ $\left.c_{3}\right) \wedge\left(b_{5} \Leftrightarrow\left(\left(b_{1} \wedge \neg\left(\neg b_{2} \wedge b_{4}\right)\right) \vee c_{5}\right)\right)$
- $F_{1}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T} \mid \neg b_{3} \vee \neg b_{1}\right\}$ $F_{2}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T} \mid \neg b_{5} \vee\left(b_{1} \wedge \neg\left(\neg b_{2} \wedge b_{4}\right)\right)\right\}$

Compute the number of direct preceding states of state $(1,0,0,1,1)^{T}$. Simplifying the conditions yields $b_{3} \Leftrightarrow \neg b_{1}, b_{4}=0, b_{5}=1$ and hence, there are the 4 states of the form $\left(b_{1}, *, \neg b_{1}, 0,1\right)$. (Obviously, q_{0} is not a preceding state, as it would require the last entry to be 0 .)

Exercise 4 (9 points)

Give an algorithm which decides for two LTL formulas φ and ψ whether $\mathcal{L}(\varphi)=\mathcal{L}(\psi)$. Prove the correctness. Algorithm: Output " $\mathcal{L}(\neg(\varphi \Leftrightarrow \psi))=\varnothing$ ".

- the output is computable as we can construct the GNBA for $\neg(\varphi \Leftrightarrow \psi)$ and then decide emptyness of that GNBA.
- the algorithm is sound since

$$
\begin{array}{ll}
& \mathcal{L}(\varphi)=\{w \mid w \models \varphi\}=\{w \mid w \models \psi\}=\mathcal{L}(\psi) \\
\text { iff } & \mathcal{L}(\varphi \Leftrightarrow \psi)=\{w \mid w \models \varphi \Leftrightarrow \psi\}=\Sigma^{\omega} \\
\text { iff } & \mathcal{L}(\neg(\varphi \Leftrightarrow \psi))=\{w \mid w \models \neg(\varphi \Leftrightarrow \psi)\}=\varnothing
\end{array}
$$

