Introduction to Model Checking (VO)

WS 2009/2010

 ${\rm LVA}\ 703503$

First name:	
Last name:	
Matriculation number:	

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1	22	
2	21	
3	21	
4	6	
Σ	70	
Grade		

Exercise 1 (11 + 11 points)

Consider the following properties over $AP = \{s, t\}$ or $\Sigma = 2^{AP}$.

- P_1 : There are infinitely many s's
- P_2 : The input is of the form $(\{s\}\{s\}\{s,t\})^{\omega}$
- P_3 : If P_1 holds then P_2 holds.

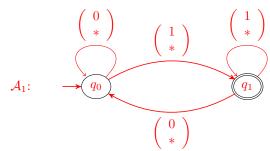
Specify each of the properties P_i

- (i) as LTL formula φ_i
- (ii) as NBA A_i

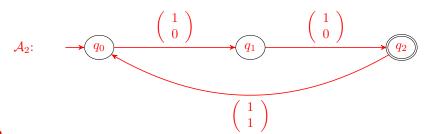
(i)
$$\bullet \varphi_1 = \mathsf{GF} s$$

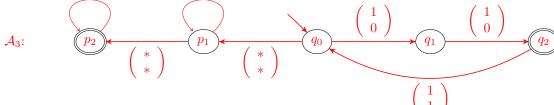
•
$$\varphi_2 = \mathsf{G} \, s \wedge \neg t \wedge \mathsf{X} \, \neg t \wedge \mathsf{X} \, \mathsf{X} \, t \wedge \mathsf{G} \, (t \Rightarrow (\mathsf{X} \, \neg t \wedge \mathsf{X} \, \mathsf{X} \, \neg t \wedge \mathsf{X} \, \mathsf{X} \, \mathsf{X} \, t))$$

•
$$\varphi_3 = \varphi_1 \Rightarrow \varphi_2$$



(ii) •





•

Exercise 2 (21 points)

Consider the following nanoPromela statement.

Construct the program graph for this statement. For the whole statement, additionally derive all transitions formally using the inference rules.

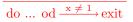
You may use abbreviations like "do ... od", "if ... fi", ...

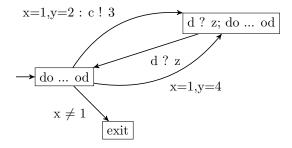
$$\frac{c ! 3 \xrightarrow{c ! 3} exit}{if ... fi \xrightarrow{y = 2 : c ! 3} exit}$$

$$if ... fi; d ? z \xrightarrow{y = 2 : c ! 3} d ? z$$

$$do ... od \xrightarrow{x = 1, y = 2 : c ! 3} d ? z; do ... od$$

$$\frac{skip \rightarrow exit}{if ... fi \xrightarrow{y = 4} exit}$$





Exercise 3 (7 + 14 points)

Consider the following formula:

$$\varphi = (a U b) U (X a)$$

(i) Fill in all values of the φ -expansion for the given input word that can uniquely be determined where ... may be arbitrary.

(ii) Construct the automaton for φ .

Construct the automaton for
$$\varphi$$
.
$$\mathcal{A}_{\varphi} = (\{q_0\} \uplus 2^5, 2^2, q_0, \delta, F_1, F_2) \text{ where the Fischer Ladner closure is } cl(\varphi) = \mathsf{a}, \mathsf{b}, \underbrace{\mathsf{X}_{\mathsf{a}}}_{\varphi_3}, \underbrace{\mathsf{a} \, \mathsf{U} \, \mathsf{b}}_{\varphi_4}, \varphi$$

•
$$(c_1, \ldots, c_5)^T \in \delta(q_0, (d_1, d_2)^T)$$
 iff $(c_1 \Leftrightarrow d_1) \wedge (c_2 \Leftrightarrow d_2) \wedge c_5$

•
$$(c_1,\ldots,c_5)^T \in \delta((b_1,\ldots,b_5)^T,(d_1,d_2)^T)$$
 iff $(c_1 \Leftrightarrow d_1) \wedge (c_2 \Leftrightarrow d_2) \wedge (b_3 \Leftrightarrow c_1) \wedge (b_4 \Leftrightarrow b_2 \vee (b_1 \wedge c_4)) \wedge (b_5 \Leftrightarrow b_3 \vee (b_4 \wedge c_5))$

•
$$F_1 = \{(b_1, \dots, b_5)^T \mid \neg b_4 \lor b_2\}$$

 $F_2 = \{(b_1, \dots, b_5)^T \mid \neg b_5 \lor b_3\}$

Explicitly list all transitions leading to state $q = (1, 0, 0, 1, 1)^T$. Simplifying the conditions yields $d_1 \wedge \neg d_2 \wedge d_3 \wedge d_4 \wedge d_$ $b_3 \wedge (b_4 \Leftrightarrow b_2 \vee b_1) \wedge b_5$ and hence,

$$\begin{array}{cccc} (0,0,1,0,1)^T & \xrightarrow{(1,0)^T} & q \\ (0,1,1,1,1)^T & \xrightarrow{(1,0)^T} & q \\ (1,0,1,1,1)^T & \xrightarrow{(1,0)^T} & q \\ (1,1,1,1,1)^T & \xrightarrow{(1,0)^T} & q \\ & q_0 & \xrightarrow{(1,0)^T} & q \end{array}$$

Exercise 4 (6 points)

Each correct answer is worth 2 points. For each wrong answer 1 point is subtracted. It is not possible to get negative points from this exercise.

	Yes	No
LTL model checking is PSPACE complete.	√	
Consider restricted nanoPromela programs which may have at most 2 boolean variables (and no other variables). Then the size of the resulting transition system is polynomial in the size of the program.	I	√
Satisfiablity of LTL-formulas is decidable.	√	