First name:

Last name:

Matriculation number:

- Please answer all exercises in a readable and precise way.
- Please cross out solution attempts which are replaced by another solution.
- Please do not remove the staples of the exam.
- Cheating is not allowed. Everyone who is caught will fail the exam.

Exercise	Maximal points	Points
1	18	
2	18	
3	25	
4	9	
Σ	70	
Grade		

Exercise $1(9+9$ points)

(i) Consider the GNBA \mathcal{A} over $\Sigma=\{a, \ldots, s\}$ where the 4 final state sets are

- $F_{1}=\{1,2,3,9,10,12\}$
- $F_{2}=\{5,6,7,8,12\}$
- $F_{3}=\{1,4,11,12\}$
- $F_{4}=\{2,4,6,8,10,12\}$
and where the structure of the graph is as follows.

Use the algorithm to check emptyness of GNBAs to determine whether $\mathcal{L}(\mathcal{A})=\varnothing$. If $\mathcal{L}(\mathcal{A}) \neq \varnothing$, also give an accepted word that the algorithm produces.
(ii) Let $\Sigma=\{0,1\}$. Formalize the following language over Σ as NBA.

$$
\mathcal{L}=\left\{w \in \Sigma^{\omega} \mid w \neq(1100)^{\omega}\right\}
$$

Exercise 2 (18 points)

Consider the channel system $\left[\right.$ process $_{0} \mid$ process $_{1}$] where for process $_{i}$ we have the following program graph:

Construct the reachable part for the corresponding transition system where the states are five-tuples of the following form:
(location process 0 , location process 1 , value e_{0}, value e_{1}, value x)
You do neither have to provide the set of atomic propositions nor the labeling function. For specifying states, you may use abbreviations like $(i, c, f, t, 0)$ for (init, crit, false, true, 0), etc.

Exercise 3 ($6+19$ points)

Consider the following formula:

$$
\varphi=\neg(\operatorname{true} \mathrm{U}(\mathrm{a} \wedge \neg \mathrm{X} a)) \wedge \operatorname{true} \mathrm{U} a \wedge \operatorname{true} \mathrm{U} \neg a
$$

The following exercises can be done independently!
(i) Construct a simplified formula ψ with $\varphi \equiv \psi$ by using F and G instead of U . Then try to formulate the meaning of ψ in words (German or English).
(ii) Construct the automaton for φ using the improved translation.
$\mathcal{A}_{\varphi}=\left(\left\{q_{0}\right\} \uplus 2^{5}, 2^{1}, q_{0}, \delta, F_{1}, F_{2}, F_{3}\right)$ where

- The reduced Fischer Ladner closure is

$$
c l^{\prime}(\varphi)=
$$

- $\left(c_{1}, \ldots, c_{5}\right)^{T} \in \delta\left(q_{0}, d_{1}\right)$ iff
- $\left(c_{1}, \ldots, c_{5}\right)^{T} \in \delta\left(\left(b_{1}, \ldots, b_{5}\right)^{T}, d_{1}\right)$ iff
- $F_{1}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T} \mid\right.$

$$
\begin{aligned}
& F_{2}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T}\right. \\
& F_{3}=\left\{\left(b_{1}, \ldots, b_{5}\right)^{T}\right.
\end{aligned}
$$

Explicitly give all outgoing transitions of state $(1,1,1,1,1)^{T}$.

Exercise 4 (9 points)

Each correct answer is worth 3 points. A wrong answer results in zero points (for that question, not for the whole exercise). Giving no answer is worth 1 point.

	Yes	No
Let φ be a formula with n^{2} temporal operators. Every equivalent GNBA has a size of at least 2^{n} states.		
$\mathrm{X} \varphi \mathrm{U} \varphi \equiv \mathrm{X} \varphi \vee \varphi$		
Let loop be an abbreviation for do $:: ~ \mathrm{~b}$ of loop is $\{$ loop, c ? ? $;$ loop $\}$.	$\mathrm{x} ; \mathrm{c}$? y od. The set of sub-statements	

