1. Consider the following propositional formulas

$$
\begin{aligned}
& A:=\neg((q \vee r) \wedge(p \rightarrow q) \rightarrow(r \rightarrow \neg q) \vee(p \wedge r)) \\
& B:=(p \wedge q \rightarrow r) \rightarrow(p \rightarrow(q \rightarrow r))
\end{aligned}
$$

a) Show that formula A is satisfiable by giving a satisfying assignment.
b) Show that formula B is valid, by giving a proof in natural deduction.
2. Consider the following sentences:
(1) A bird is large if its father or its mother is large.
(2) A bird can fly if all its relatives can fly.
(3) Any bird is related to its father and its mother.
(4) Birds eat fish if they do not eat worms.
(5) There exists a large bird that cannot fly.
a) For each of the sentences above, give a first-order formula (perhaps with equality) that formalises the sentence. Use therefore the following constants, functions and predicates:

- Individual constants: fish, worms.
- Function constants: father, mother, which are unary.
- Predicates constants: Bird, Small, Medium, Large, Fly, which are unary and Relative, Eat, which are binary.
The interpretation of the unary predicates follows their names, Relative (x, y) represents that " x is a relative of y ", while Eat (x, y) means " x eats y ".
b) Show that your formalisation is satisfiable.

3. Consider first-order logic without equality. Let \mathcal{I} be an interpretation and F a formula. Then we attempt to define the satisfaction relation $\mathcal{I} \models F$ as follows:
$-\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right)$ iff $\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{I}}$
$-\mathcal{I} \mid=\neg F$ iff $\mathcal{I} \not \vDash F$.
$-\mathcal{I} \models F \wedge G$ iff $\mathcal{I} \models F$ and $\mathcal{I} \models G$.

- $\mathcal{I} \models \exists x F(x)$ iff there exists a variable x such that $\mathcal{I} \models F(x)$
a) The definition is incorrect. Give an example or explain informally why this definition is incorrect.
b) Strictly speaking this definition is also incomplete for the language of first-order logic without equality, explain why.
c) Extend the given definition so that it becomes correct.

4. Consider the following first-order formulas with predicate constants P, Q, and R :

$$
\begin{aligned}
C & :=\forall x \exists y \forall z \forall u \exists w(\mathrm{Q}(x, y, z) \rightarrow \mathrm{P}(w, x, y, u)) \\
D & :=\exists x \forall y \forall z \exists w(\mathrm{R}(x, z) \wedge \mathrm{R}(x, y) \rightarrow \mathrm{R}(x, w) \wedge \mathrm{R}(y, w) \wedge \mathrm{R}(z, w)) \\
E & :=\forall x(\neg \mathrm{Q}(x) \rightarrow \mathrm{R}(x)) \rightarrow \neg(\forall x \neg \mathrm{R}(x) \wedge \exists x \neg \mathrm{Q}(x))
\end{aligned}
$$

a) Give the SNF of formula C.
b) Give the SNF of formula D.
a) Use resolution for first-order to show that formula E is valid.
5. Determine whether the following statements are true or false. Give your answers on the answer sheet. Every correct answer is worth 1 points and every wrong -1 points.

- Consider propositional logic. Then $A_{1}, \ldots, A_{n} \models B$, asserts that $\mathrm{v}(B)=\mathrm{T}$, whenever there exists $i \in\{1, \ldots, n\}$ such that $\mathrm{v}\left(A_{i}\right)=\mathrm{T}$, for any assignment v .
- Natural deduction for propositional logic is sound and complete. Furthermore it is the only formal system with these properties.
- Let \mathcal{A}, \mathcal{B} be first-order structures such that $\mathcal{A} \cong \mathcal{B}$. Then for every sentence F we have $\mathcal{A} \models F$ iff $\mathcal{B} \models F$.
- If every finite subset of a set of first-order formulas \mathcal{G} has a countable model, then \mathcal{G} has a countable model.
- Suppose \mathcal{G} is a set of first-order formulas and $\mathcal{G} \vdash F$. Then there exists a finite subset $\mathcal{G}_{0} \subseteq \mathcal{G}$ such that $\mathcal{G}_{0} \vdash F$.
- Let S be the set of satisfiable sets of first-order formulas \mathcal{G}. Then S fulfils the satisfaction properties.
- Let \mathcal{G} be a set of first-order formulas and let F be a first-order formula such that $\mathcal{G} \vdash F$. Then $\mathcal{G} \models \neg F$.
- There exists a satisfiable and universal first-order sentence (without $=$) F, such that F doesn't have a Herbrand model.
- A unifier σ of expressions E and F is a ground substitution such that $E \sigma=F \sigma$.
- Let F be a sentence and \mathcal{C} its clause form. Then $\square \in \operatorname{Res}^{*}(\mathcal{C})$ if F is satisfiable.

