1. a) The only assignment that satisfies formula A is given by $\mathrm{v}(p)=\mathrm{F}$, $\mathrm{v}(q)=\mathrm{T}$, and $\mathrm{v}(r)=\mathrm{T}$.
b) The following proof shows that formula B is valid:

1	$p \wedge q \rightarrow r$	assumption
2	p	assumption
3	q	assumption
4	$p \wedge q$	$\wedge: \mathrm{i} 2,3$
5	r	\rightarrow e 1,4
6	$q \rightarrow r$	\rightarrow i $3-5$
7	$p \rightarrow(q \rightarrow r)$	\rightarrow i $2-6$
8	$(p \wedge q \rightarrow r) \rightarrow(p \rightarrow(q \rightarrow r))$	\rightarrow i $1-7$

2. a) (1) $\forall x(\operatorname{Bird}(x) \wedge(\operatorname{Large}($ father $(x)) \vee \operatorname{Large}(\operatorname{mother}(x))) \rightarrow \operatorname{Large}(x))$
(2) $\forall x(\operatorname{Bird}(x) \wedge \forall y(\operatorname{Relative}(y, x) \rightarrow \operatorname{Fly}(y)) \rightarrow \mathrm{Fly}(x))$
(3) $\forall x(\operatorname{Bird}(x) \rightarrow \operatorname{Relative}($ father $(x), x) \wedge \operatorname{Relative}($ mother $(x), x))$
(4) $\forall x(\operatorname{Bird}(x) \wedge \neg \operatorname{Eat}(x$, worms $) \rightarrow \operatorname{Eat}(x$, fish $))$
(5) $\exists x(\operatorname{Bird}(x) \wedge \operatorname{Large}(x) \wedge \neg \mathrm{Fly}(x))$
b) We define a suitable structure $\mathcal{A}=(A, a)$ where $A=\{f, p, w\}$ and the mapping a is defined as follows:

- $a($ fish $)=f, a($ worms $)=w$.
- $a($ father $)=a($ mother $):=f: A \mapsto p$, that is all function symbols are mapped to the constant function that always returns p.
- $a($ Bird $)=a($ Large $)=\{p\}, a($ Eat $)=\{(p, f)\}, a($ Relative $)=$ $\{(p, p)\}$, and the interpretation of all other predicates is empty.
Then $\mathcal{A} \mid=F$ holds for each of the five sentences above and thus the formalisation is satisfiable.

3. a) The definition
$\mathcal{I} \vDash \exists x F(x) \Longleftrightarrow$ there exists a variable x such that $\mathcal{I} \models F(x)$ confuses the variable x with an arbitrary element of the domain. Moreover, assuming we do not distinguish between bound and free variables (as in the faulty definition) we can consider the following interpretation $\mathcal{I}=(\mathcal{A}, \ell)$ and the formula $\exists x \mathrm{P}(x) \wedge \neg P(x)$. Let the domain of $A=\{$ blue, green $\}$, let $\mathrm{P}^{\mathcal{A}}=\{$ blue $\}$ and let $\ell=$ $\{x \in \mathcal{V} \mid x \mapsto$ green $\}$. Then $\mathcal{I} \models \exists x \mathrm{P}(x) \wedge \neg P(x)$ should hold, but does not hold with respect to the faulty definition.
b) The definition missing cases for the logical symbols \vee, \rightarrow and \forall. This can either corrected by adding these definitions, or by assuming that the base language only contains \neg, \wedge, and \exists as logical symbols.
c) See Definition 3.8.
4. a) The SNF of formula C has the form

$$
\forall x \forall z \forall u(\neg \mathrm{Q}(x, \mathrm{f}(x), z) \vee \mathrm{P}(\mathrm{~g}(x, z, u), x, \mathrm{f}(x), u)),
$$

where f, g are new Skolem functions.
b) The SNF of formula D has the form

$$
\begin{gathered}
\forall y \forall z((\neg \mathrm{R}(\mathrm{a}, z) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{R}(\mathrm{a}, \mathrm{f}(y, z))) \wedge \\
\quad(\neg \mathrm{R}(\mathrm{a}, z) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{R}(y, \mathrm{f}(y, z))) \wedge \\
(\neg \mathrm{R}(\mathrm{a}, z) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{R}(z, \mathrm{f}(y, z)))),
\end{gathered}
$$

where a is a new Skolem constants, f a new Skolem function.
(a) First we negate E and transform the result to obtain for example the following corresponding SNF:

$$
\forall x \forall y((\mathrm{R}(x) \vee \mathrm{Q}(x)) \wedge \neg \mathrm{R}(y) \wedge \neg \mathrm{Q}(\mathrm{a})),
$$

where a is a new Skolem constant. We obtain $\mathcal{C}=\{\mathrm{R}(x) \vee$ $\mathrm{Q}(x), \neg \mathrm{R}(y), \neg \mathrm{Q}(\mathrm{a})\}$ as the corresponding set of clauses. A possible resolution proof is given below, where for each inference σ denotes the most general unifier.

$$
\frac{\mathrm{R}(x) \vee \mathrm{Q}(x) \neg \mathrm{R}(y)}{\underline{\mathrm{Q}(x)} \sigma=\{y \mapsto x\} \quad \neg \mathrm{Q}(\mathrm{a})} \underset{\square}{ } \sigma=\{x \mapsto \mathrm{a}\}
$$

5.

Consider propositional logic. Then $A_{1}, \ldots, A_{n} \models B$, asserts that \square
 $\mathrm{v}(B)=\mathrm{T}$, whenever there exists $i \in\{1, \ldots, n\}$ such that $\mathrm{v}\left(A_{i}\right)=$ T , for any assignment v .
Natural deduction for propositional logic is sound and complete. \square
 Furthermore it is the only formal system with these properties.
Let \mathcal{A}, \mathcal{B} be first-order structures such that $\mathcal{A} \cong \mathcal{B}$. Then for every sentence F we have $\mathcal{A} \models F$ iff $\mathcal{B} \models F$.

If every finite subset of a set of first-order formulas \mathcal{G} has a countable model, then \mathcal{G} has a countable model.
Suppose \mathcal{G} is a set of first-order formulas and $\mathcal{G} \vdash F$. Then there exists a finite subset $\mathcal{G}_{0} \subseteq \mathcal{G}$ such that $\mathcal{G}_{0} \vdash F$.
Let S be the set of satisfiable sets of first-order formulas \mathcal{G}. Then S fulfils the satisfaction properties.
Let \mathcal{G} be a set of first-order formulas and let F be a first-order \square \checkmark formula such that $\mathcal{G} \vdash F$. Then $\mathcal{G} \models \neg F$.
There exists a satisfiable and universal first-order sentence F
 (without $=$), such that F doesn't have a Herbrand model.
A unifier σ of expressions E and F is a ground substitution such \square that $E \sigma=F \sigma$.
Let F be a sentence and \mathcal{C} its clause form. Then $\square \in \operatorname{Res}^{*}(\mathcal{C})$ if \square F is satisfiable.

