
Universität Innsbruck Winter Term 2010/2011

Lecture Notes

Logic (MSc)

Appendix to Notes for the Lecture in the

Winter Term 2010/2011

Georg Moser

Winter 2010



This document has been produced with the help of KOMA-Script and LATEX. For the
intensive guidance on LATEX, I’d like to express my sincere thanks to Christian Sternagel.



1

Digression: The Curry-Howard Isomorphism

In this optional chapter we consider the connection between proofs and programs in more
detail. For that we describe the Curry-Howard isomorphism between intuitionistic natural
deduction and the typed λ-calculus. This correspondence allows us to speak of programs
and proofs interchangingly and transform or develop formalisms and methods in one area
to apply it to the other. We restrict ourselvs to the bare essentials in presenting the Curry-
Howard correspondence. For a complete account the reader is kindly referred to Larrecq
and Makie, see [5].

1.1 A Problem with the Excluded Middle

In order to set the table for the presentation of the Curry-Howard isomorphism it is necessary
to describe intuitionistic logic and the λ-calculus. In this section we give the usual motivating
example of intuitionistic logic and present a calculus for this logic.

Theorem 1.1. There are solutions of the equation xy = z with x and y irrational and z

rational.

Proof. We give a non-constructive proof. Clearly
√

2 is an irrational number. Consider√
2
√

2
: One of the following two cases has to occur:

(i)
√

2
√

2
is rational. In this case put

x =
√

2 y =
√

2 z =
√

2
√

2

Clearly these settings solve the equation xy = z. Thus the theorem is proven.

(ii)
√

2
√

2
is irrational. In this case put

x =
√

2
√

2
y =
√

2 z = (
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
= 2

1



1 Digression: The Curry-Howard Isomorphism

introduction elimination

∧ E F
E ∧ F ∧ : i

E ∧ F
E

∧ : e E ∧ F
F

∧ : e

∨ E
E ∨ F ∨ : i

F
F ∨ F ∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e

Figure 1.1: Intuitionistic Propositional Rules (Part I)

Again the equation xy = z is solved and the lemma is proven.

The problem with the above proof is that it is non-constructive: The statement of the
theorem is existential: something should exist namely the numbers x, y, and z. Despite
this the proof does not provide a method to actually construct these numbers. This is a
serious problem if we want to extract a program out of the given proof which is exactly the
point of the Curry-Howard correspondence. To overcome this problem we consider proofs
of a specific form: intuitionistic proofs.

1.2 Natural Deduction for Intuitionistic Logic

In this section we introduce a formal system for intuitionistic logic and claim its soundness
and completeness with respect to the standard Kripke-semantics. As the focus of this
section is on the correspondence between proofs and programs we are not concerned with
the semantics of intuitionistic logic here. (For more information see [3].) Note that the
semantics of intuitionistic logic (even for the propositional case) is more complex than the
one considered for classical (propositional) logic.

Below we give the natural deduction rules of intuitionistic logic, denoted as NJ. In the
following the natural deduction rules as defined in [6] are denoted as NK. It suffices if we
consider the propositional part only. The rules for the connectives ¬, ∨, ∧, and→ are given
in Figure 4.1 and 4.2.

2



1.3 Typed λ-Calculus

introduction elimination

¬

E
...
⊥
¬E ¬ : i

F ¬F
⊥ ¬ : e

⊥ ⊥
F
¬ : e

Figure 1.2: Intuitionistic Proposition Rules (Part II)

The only difference between the classical rules and those given here is (apart from the
omission of equality) is the absence of the double-negation rule:

¬¬F
F
¬¬ : e

This seemingly small change has the effect that in NJ the tertium non-datur F ∨ ¬F is no
longer derivable: NJ 6` F ∨ ¬F .

1.3 Typed λ-Calculus

In this section we (very) briefly introduce the typed λ-calculus. See [1] for extensive infor-
mation on the untyped λ-calculus and see [2, 4] for background information on the typed
system.

Definition 1.1. We define the set of types T as follows:

– a variable type: α, β, γ, . . .

– if σ, τ are types, then (σ × τ) is a (product) type

– if σ, τ are types, then (σ → τ) is a (function) type

Definition 1.2. The typed λ-terms are defined as follows:

– any (typed) variable x : σ is a (typed) term

– if M : σ, N : τ are terms, then 〈M,N〉 : σ × τ is a term

– if M : σ × τ is a term, then fst(M) : σ and snd(M) : τ are terms

– if M : τ is a term, x : σ a variable,
then the abstraction (λxσ.M) : σ → τ is a term

3



1 Digression: The Curry-Howard Isomorphism

– if M : σ → τ , N : σ are terms, then the application (MN) : τ is a term.

Example 1.1. The following are (well-formed, typed) terms

λfx.fx : (σ → τ)→ σ → τ 〈λx.x, λy.y〉 : (σ → σ)× (τ → τ) ,

but λx.xx cannot be typed!

Definition 1.3. The set of free variables of a term is defined as follows

– FV(x) = {x}.

– FV(λx.M) = FV(M)− {x}

– FV(MN) = FV(〈M,N〉) = FV(M) ∪ FV(N).

– FV(fst(M)) = FV(snd(M)) = FV(M).

Occurrences of x in the scope of λ are called bound : λx.xy(λy.xy(λx.z))y. This notion
is made precise in the next definition.

Definition 1.4. The set of bound variables of a term is defined as follows

– BV(x) = ∅.

– BV(λx.M) = BV(M) ∪ {x}.

– BV(MN) = BV(〈M,N〉) = BV(M) ∪ BV(N).

– BV(fst(M)) = BV(snd(M)) = BV(M).

In the definition of β-reduction below we make use of substitution.

Definition 1.5. M [x := N ] denotes the result of substituting N for x in M

– x[x := N ] = N and if x 6= y, then y[x := N ] = y

– (λx.M)[x := N ] = λx.M

– (λy.M)[x := N ] = λy.(M [x := N ]), if x 6= y and y 6∈ FV(N)

– (M1M2)[x := N ] = (M1[x := N ])(M2[x := N ])

– 〈M1,M2〉[x := N ] = 〈M1[x := N ],M2[x := N ]〉

– fst(M)[x := N ] = fst(M [x := N ])

– snd(M)[x := N ] = snd(M [x := N ])

4



1.4 The Curry-Howard Isomorphism

x : σ ` x : σ ref

×
Γ `M : σ Γ ` N : τ

Γ ` 〈M,N〉 : σ × τ
pair Γ `M : σ × τ

Γ ` fst(M) : σ
fst

Γ `M : σ × τ
Γ ` snd(M) : τ

snd

→
Γ, x : σ `M : τ

Γ ` λx.M : σ → τ
abs Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ
app

Figure 1.3: Type Checking System

Now we introduce the notion of computation in the (typed) λ-calculus. This reduction
rules are called β-reduction.

Definition 1.6.

(λx.M)N
β−→M [x := N ]

fst(〈M,N〉) β−→M

snd(〈M,N〉) β−→ N

Note that β-reduction is closed under context:

M
β−→ N =⇒



LM
β−→ LN

ML
β−→ NL

λx.M
β−→ λx.N

〈M,L〉 β−→ 〈N,L〉

〈L,M〉 β−→ 〈L,N〉

fst(M)
β−→ fst(N)

snd(M)
β−→ snd(N)

1.4 The Curry-Howard Isomorphism

In this section we introduce the Curry-Howard isomorphism also know as the Curry-Howard
correspondence. We start by presenting a basic type checking system for the typed λ-calculus
in Figure 4.3.

Note that the system presented in Figure 4.3 is closely related to the type checking
system introduced in the lecture on functional programming, see [7, Chapter 9]. The only
difference is that we have extended the rules (ref), (abs), and (app) as in [7, Chapter 9]
by rules governing the product types. This is due to a different design choice in crafting

5



1 Digression: The Curry-Howard Isomorphism

introduction elimination

F ` F Ax

∧ Γ ` E Γ ` F
Γ ` E ∧ F ∧ : i

Γ ` E ∧ F
Γ ` E ∧ : e

Γ ` E ∧ F
Γ ` F ∧ : e

∨ Γ ` E
Γ ` E ∨ F ∨ : i

Γ ` F
Γ ` E ∨ F ∨ : i

Γ ` E ∨ F Γ, E ` G Γ, F ` G
Γ ` G ∨ : e

→
Γ, E ` F

Γ ` E → F
→: i

Γ ` E Γ ` E → F
Γ ` F →: e

¬
Γ, F `⊥
Γ ` ¬F ¬ : i

Γ ` F Γ ` ¬F
Γ `⊥ ¬ : e Γ `⊥

Γ ` F ¬ : e

Figure 1.4: Intuitionistic Propositional Rules (Sequent Style)

our type system which is inessential, but simplifies the description of the Curry-Howard
isomorphism.

We recall the system of natural deduction rules presented above. In this context it is
useful to change the style of presentation of these rules. For the sequel of this chapter we
use the sequent style form to present these rules, see Figure 4.4. It is easy to see that these
rules are equivalent to those natural deduction rules presented in Figure 4.1 and 4.2.

The crucial advantage of the presentation of natural deduction rules as in Figure 4.4 is the
direct correspondence to the type checking system given in Figure 4.3. For instance the rule
defining (app) in Figure 4.3 and implication elimination (→: e) are essentially the same rule.
More precisely, the type of a term in the type checking system corresponds to a formula in
the natural deduction rules and vice versa. Observe the following correspondence:

(ref) ∼ (Ax)
(abs) ∼ (→: i)
(app) ∼ (→: e)
(pair) ∼ (∧ : i)
(fst) ∼ (∧ : e)
(snd) ∼ (∧ : e)

In order to make this correspondence complete it suffices to introduce additional type
checking rules (and corresponding types) for the the natural deduction rules (∨ : i) and
(∨ : e). This is the purpose of the rules given in Figure 4.5. The case of destructor encodes
pattern matching. Based on these type checking rules we can complete the table above:

6



1.4 The Curry-Howard Isomorphism

∨
Γ `M : σ

Γ ` inl(M) : σ + τ
Γ ` N : τ

Γ ` inr(N) : σ + τ

Γ `M : σ + τ Γ, x : σ ` N1 : γ Γ, y : τ ` N2 : γ
Γ ` case M of inl(x) −→ N1 | inr(y) −→ N2 : γ

Figure 1.5: Type Checking System (Part II)

(inl) ∼ (∨ : i)
(inr) ∼ (∨ : i)
(case) ∼ (∨ : e)

The here described correspondence between types and formulas is often referred to as “types
as formulas” paradigm. We summarise the isomorphism in the following table:

formulas ∼ types
proofs ∼ programs
normalisation ∼ computation

Above we have already seen the precise connection between formulas and types. What
is missing is some intuition about the last correspondence: normalisation of proofs and
computations in a (typed) λ-calculus. A detailed presentation of the relation is outside the
scope of this lecture. But it is easy to sketch the idea. Consider the following proof Ψ in
the type checking system:

Π1

...
Γ `M : σ

Π2

...
Γ ` N : τ

Γ ` 〈M,N〉 : σ × τ
Γ ` fst(〈M,N〉) : σ

If we conceive this proof as a natural deduction proof and focus on the formulas proven we
observe that there exists some redundancy in this proof. Essentially we derive the “formula”
σ by first introducing the “formula” σ × τ and then eliminating × again. A shorter proof
Ψ′ is given below:

Π1

...
Γ `M : σ

Such a proof transformation is called normalisation.
If we now consider the terms occurring in these proofs we see that in the first proof Ψ the

term fst(〈M,N〉) is shown to be well-typed with type σ, while in the second proof Ψ′ the
term M is shown to have type σ. Thus the normalisation from Ψ to Ψ′ directly corresponds

7



1 Digression: The Curry-Howard Isomorphism

the the β-reduction step fst(〈M,N〉) β−→M and thus to a computation. This correspondence
between normalisation of proofs and computation in the typed λ-calculus holds in general.
As another example we consider the β-reduction (λx.M)N

β−→M [x := N ] together with the
following proof normalisation:

Π1

...
Γ, x : σ `M : τ

Γ ` λx.M : σ → τ

Π2

...
Γ ` N : τ

Γ ` (λx.M)N : τ

=⇒

Π2

Π1

...
Γ `M [x := N ]

Here the right proof is to be understood as the extension of proof Π1 by the inferences in
Π2 such that all occurrences of x in Π1 are replaced by the term N .

8



Bibliography

[1] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and
the Foundations of Mathematics. Elsevier, second edition, 1985.

[2] H. Barendregt and E. Barendsen. Introduction to lambda calculus. In Aspenæs Work-
shop on Implementation of Functional Languages, Göteborg. Programming Methodology
Group, University of Göteborg and Chalmers University of Technology, 1988. Available
at ftp://ftp.cs.kun.nl/pub/CompMath.Found/lambda.pdf.

[3] M. Dummett. Elements of Intuitionism. Oxford Logic Guides. Oxford University Press,
second edition, 2000.

[4] J.R. Hindley and J.P. Seldin. Lambda-Calculus and Combinators: An Introduction.
Cambridge University Press, second edition, 2008.

[5] J.G. Larrecq and I. Makie. Proof Theory and Automated Deduction. Number 6 in
Applied Logic Series. Kluwer Academic Publishers, first edition, 2001.

[6] G. Moser. Logic (MSc). Institute for Computer Science, 2010. Available at http:

//cl-informatik.uibk.ac.at/teaching/ws10/logic/.

[7] C. Sternagel. Functional Programming. Institute for Computer Science, 2009. Available
at http://cl-informatik.uibk.ac.at/teaching/ws09/fp/material/fpln.pdf.

9

ftp://ftp.cs.kun.nl/pub/CompMath.Found/lambda.pdf
http://cl-informatik.uibk.ac.at/teaching/ws10/logic/
http://cl-informatik.uibk.ac.at/teaching/ws10/logic/
http://cl-informatik.uibk.ac.at/teaching/ws09/fp/material/fpln.pdf

	Digression: The Curry-Howard Isomorphism
	A Problem with the Excluded Middle
	Natural Deduction for Intuitionistic Logic
	Typed -Calculus
	The Curry-Howard Isomorphism


