Logic: Errata

Chapter "Why Logic is Good For You"

- page 3, "the the Nelson-Oppen" \rightarrow "the Nelson-Oppen"
- page 3, "If two theories [...]. Then also [...]" \rightarrow "If two theories T_1, T_2 fulfil certain conditions and it is known that satisfiability of quantifier-free formulas with respect to the theories T_1 and T_2 is decidable, then satisfiability of quantifier-free formulas with respect to the union $T_1 \cup T_2$ is decidable."
- page 4, "as a unique model" \rightarrow "has a unique model"
- page 5, "bad should happy" \rightarrow "bad should happen"

Chapter "Propositional Logic"

- page 8, "We write ⊢ A instead of Ø ⊢ A and call the formula A valid in this case."
 → "We write ⊢ A instead of Ø ⊢ A and call the formula A provable in this case."
- page 10, "A formula F is in said to be in conjunctive normal form" → "A formula F is said to be in conjunctive normal form"
- page 11, "otherwise it is C is said to be *inconsistent*" → "otherwise C is said to be *inconsistent*"
- page 11, Thm. 2.3, "propositional axioms" \rightarrow "propositional atoms"

Chapter "Syntax and Semantics of First-Order Logic"

- page 21, "The input x of M" \rightarrow "The input x of M such that the length of x is n,"
- page 24, "then m is called an *isomorphism*" \rightarrow "Then m is called an *isomorphism*"
- page 26, "Define a two formulas F and G, such that $F \not\models G$ holds and $F \not\models \neg G$ holds" \rightarrow "Define two formulas F and G, such that $F \not\models G$ holds and $F \not\models \neg G$ holds"

Chapter "Soundness and Completeness of First-Order Logic"

- page 31, "In we obtain $\mathcal{J} \models \mathcal{G}$ " \rightarrow "In sum we obtain $\mathcal{J} \models \mathcal{G}$ "
- page 32, "We have to prove that either every finite subset of G ∪ {E} is in S or every finite subset of G ∪ {F} is in S. As this would imply that either G ∪ {E} ∈ S* or G ∪ {F} ∈ S*" → "We have to prove that either every finite subset of G ∪ {E} is in S or every finite subset of G ∪ {F} is in S, as this would imply that either G ∪ {E} ∈ S* or G ∪ {F} ∈ S* or G ∪ {F} ∈ S*."
- page 37, "call the formula A valid in this case" \rightarrow "call the formula A provable in this case"

Chapter "Extensions of First-Order Logic"

• page 46, "there exists exists a path" \rightarrow "exists a path"

Chapter "Normal Forms and Herbrand's Theorem"

- page 50, "Each step performed will preserves logical equivalence of formulas." \rightarrow "Each step performed preserves logical equivalence of formulas."
- page 53, add "A term t is called *closed* or *ground*, if t does not contain (free) variables."
- page 53, "the \mathcal{I} " \rightarrow "the interpretation \mathcal{I} "
- page 54, "the negation of this conjunction $D^{"} \rightarrow$ "the negation of this conjunction $C^{"}$
- page 56, " $\mathcal{I} \not\models G$ " \rightarrow " $\mathcal{I} \not\models F'$ "
- page 58, "Let $\mathcal{G}_2 = \{\mathsf{P}(\mathsf{c}), \neg \mathsf{P}(x)\}$ " \rightarrow "Let $\mathcal{G}_2 = \{\mathsf{P}(\mathsf{c}), \neg \mathsf{P}(a)\}$ "

Chapter "Automated Reasoning with Equality"

- page 61, the following definition is missing: "An equality problem $E = x_1 \stackrel{!}{=} v_1, \ldots, x_n \stackrel{?}{=} v_n$ in solved form *induces* the substitution $\sigma_E := \{x_1 \mapsto v_1, \ldots, x_n \mapsto v_n\}$."
- page 61, " σ'_E " \rightarrow " $\sigma_{E'}$ "
- page 62, "terminated" \rightarrow "terminates"

• page 62, Definition 8.4: The definition of $\mathsf{Res}(\mathcal{C})$ should read:

 $\mathsf{Res}(\mathcal{C}) = \{D \mid D \text{ is conclusion of an inference in Figure 8.2 with premises in } \mathcal{C}\} \cup \mathcal{C}$

The same mistake occurs in Def. 8.6, 8.7, Def. 8.8, and Def. 8.9.

- page 63, "More" \rightarrow "Moreover"
- page 63, "We only sketch the proof of the next theorem" \rightarrow "We only sketch the proof of the theorem"
- page 63, "the derivation is D" \rightarrow "the derivation D"
- page 67, the paramodulation rules should have been:

$$\frac{C \lor s \neq s'}{C\sigma'} \qquad \frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma'}$$

similar for ordered paramodulation.

- page 69, "In order to show show completeness" \rightarrow "In order to show completeness"
- page 69, "For that we show that the set of consistent set of ground clauses fulfils the satisfaction properties we need to take into account" \rightarrow "For that we need to take into account"
- page 70, change the paramodulation rules as above and " $D[t]\sigma$ is maximal with respect to $D[t]\sigma'$ " \rightarrow " $L[t]\sigma$ is maximal with respect to $D\sigma'$ "

Chapter "Issues of Security"

- page 73, "Neumann-Stubblebinde" \rightarrow "Neuman-Stubblebinde"
- page 77, "the first of the message" \rightarrow "the first of the message"
- page 77, Predicates Store_a, Store_b are missing in the definition of the language of *L*. "The last predicate (Nonce) denotes that its argument is a nonce." → "The predicate Nonce denotes that its argument is a nonce and the predicates Store_a, Store_b denote information that is in the store of Alice or Bob."
- page 77, "We collect these 12 sentences" \rightarrow "We collect these 15 sentences"
- page 78, " $\forall u \forall v ((\mathsf{Im}(u) \land \mathsf{P}(v)) \to \mathsf{Ik}(\mathsf{key}(v, w)))$ " \to " $\forall u \forall v ((\mathsf{Im}(u) \land \mathsf{P}(v)) \to \mathsf{Ik}(\mathsf{key}(u, v)))$ "