ogic

Functional Programming
WS 2011/12

Harald Zankl (VO)
Thomas BauereiB (PS) Thomas Sternagel (PS)

Computational Logic
Institute of Computer Science
University of Innsbruck

week 12

http://cl-informatik.uibk.ac.at

Week 12 - Laziness

@ Week 12 - Laziness
o Summary of Weeks 10 & 11
o Lazy Lists
e Fibonacci Numbers
o.The Sieve of Eratosthenes

HZ (ICS@UIBK) (AP 2/24

Week 12 - Laziness Summary of Weeks 10 & 11

® Week 12 - Laziness
o Summary of Weeks 10 & 11

HZ (ICSQUIBK) =3 3/24

Week 12 - Laziness Summary of Weeks 10 & 11

Type Checking

e prove that expression e has a type 7 w.r.t. environment E
e formally: EFe: 7

e use the inference rules of C to do so

HZ (ICS@UIBK) (AP 4/24

Week 12 - Laziness Summary of Weeks 10 & 11

Type Inference

e find most general type 7o for expression e w.r.t. environment E
e formally: E>e: T

e task is split into two parts:

1. transform given type inference problem into unification problem
2. solve the unification problem (result is substitution o)

HZ (ICSQUIBK) =3 5/24

This Week
OCaml introduction, lists, strings, trees I

lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

efficiency, tail-recursion, combinator-parsing

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, ...

HZ (ICS@UIBK) FP 6/24

Week 12 - Laziness Lazy Lists

@ Week 12 - Laziness

o Lazy Lists

HZ (ICSQUIBK) =3 7/24

Week 12 - Laziness Lazy Lists

Motivation
Only compute values that are needed for the final result. I

HZ (ICSQUIBK) =3 8/24

Week 12 - Laziness Lazy Lists

Motivation

Only compute values that are needed for the final result.

In the program

let f1 x = x + 1 in

let f2 x

(* something non-terminating *) in

let x = read_int() in
Lst.hd(f1 x :: f2 x)

the value of ‘£2 x' is not needed. Nevertheless, the whole program
does not terminate.

HZ (ICS@UIBK) FP 8/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 1% Iteration

type ’a llist = Nil | Cons of (’a * ’a 1llist)

HZ (ICSQUIBK) =3 9/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 1% Iteration

type ’a llist = Nil | Cons of (’a * ’a 1llist)
Nil (1)

Cons (1,Nil) ([11)
Cons(2,Cons(1,Nil)) ([2;11)

HZ (ICSQUIBK) FP 9/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 1% Iteration

type ’a llist = Nil | Cons of (’a * ’a 1llist)
Nil (1)

Cons (1,Nil) ([11)
Cons(2,Cons(1,Nil)) ([2;11)

Functions

let hd = function Nil -> failwith "empty list"
| Cons(x,_) -> x

let rec from n = Cons(n,from(n+1))

w
HZ (ICS@UIBK) FP 9/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 1t Iteration (cont'd)

Problem

hd(from 0);;
Stack overflow ...

HZ (ICSQUIBK) =3 10/24

Custom Lazy Lists — 1t Iteration (cont'd)

hd(from 0);;
Stack overflow ...

y

e block computation of tail, until explicitly requested

HZ (ICS@UIBK) FP 10/24

Custom Lazy Lists — 1t Iteration (cont'd)

hd(from 0);;
Stack overflow ...

y

e block computation of tail, until explicitly requested

e use unit function (i.e., of type unit -> ...)

HZ (ICS@UIBK) (AP 10/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 2" Iteration

type ’a llist = Nil | Cons of (’a * (unit -> ’a 1list))

HZ (ICSQUIBK) =3 11/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 2" Iteration

type ’a llist = Nil | Cons of (’a * (unit -> ’a 1list))

(t1)
Cons(l, fun () -> Nil) ([11)
Cons(2, fun () -> Cons(1l, fun () -> Nil)) ([2;1]))

HZ (ICSQUIBK) FP 11/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 2" Iteration

type ’a llist = Nil | Cons of (’a * (unit -> ’a 1list))

(1)

Cons(l, fun () -> Nil) ([11)
Cons(2, fun () -> Cons(1l, fun () -> Nil)) ([2;1]))

Functions

let hd = function Nil -> failwith "empty list"
| Cons(x,_) —> x

let tl1 = function Nil -> failwith "empty list"

| Cons(_,xs) —> xs ()

let rec from n = Cons(n,fun() -> from(n+1))

v
HZ (ICS@UIBK) (AP 11/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 2" Iteration (cont'd)

Now

+H+

hd(from 0);;
- : int = 0

hd(tl(from 0));;
- : int =1

HZ (ICS@UIBK) FP 12/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 2" Iteration (cont'd)

hd(from 0);;
: int = 0

+H+

=+

hd(tl(from 0));;
- : int =1

But
e strange that tail of 11ist is not 11list itself

HZ (ICS@UIBK) (AP 12/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 2" Iteration (cont'd)

hd(from 0);;
: int = 0

+H+

=+

hd(tl(from 0));;
- : int =1

But
e strange that tail of 11ist is not 11list itself

e use a mutually recursive type

HZ (ICS@UIBK) (AP 12/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 3™ Iteration (module UnitList)

type ’a cell = Nil | Cons of (’a * ’a 1llist)
and ’a 1list = (unit -> ’a cell)

HZ (ICSQUIBK) =3 13/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 3™ Iteration (module UnitList)

type ’a cell = Nil | Cons of (’a * ’a 1llist)
and ’a 1list = (unit -> ’a cell)

fun () -> Nil (1)
fun () -> Cons(1,fun () -> Nil) ([11)
fun () -> Cons(2,fun () -> Cons(l,fun () -> Nil)) ([2;1])

HZ (ICSQUIBK) =3 13/24

Custom Lazy Lists — 3™ Iteration (module UnitList cont’d)

Functions

let hd xs = match xs() with Nil -> failwith "empty"
| Cons(x,_) —> x

HZ (ICS@UIBK) FP 14/24

Custom Lazy Lists — 3™ Iteration (module UnitList cont’d)

Functions

let hd xs = match xs() with Nil -> failwith "empty"
| Cons(x,_) —> x

let rec from n = fun() -> Cons(n,from(n+1))

HZ (ICS@UIBK) FP 14/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 3™ Iteration (module UnitList cont’d)

let hd xs = match xs() with Nil -> failwith "empty"
| Cons(x,_) —> x

let rec from n = fun() -> Cons(n,from(n+1))

let rec to_list n xs =
| Nil -> []

| Cons(x,xs) -> x :: to_list (n-1) xs

if n < 1 then [] else match xs() with

HZ (ICS@UIBK) FP 14/24

Week 12 - Laziness Lazy Lists

Custom Lazy Lists — 3™ Iteration (module UnitList cont’d)

Functions

let hd xs = match xs() with Nil -> failwith "empty"
| Cons(x,_) —> x

let rec from n = fun() -> Cons(n,from(n+1))

let rec to_list n xs = if n < 1 then [] else match xs() with

| Nil -> []

| Cons(x,xs) -> x :: to_list (n-1) xs
Example

from O;;

- : int 1list = <fun>

to_list 10 (from 0);;
- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

v
HZ (ICS@UIBK) FP 14/24

Week 12 - Laziness Fibonacci Numbers

@ Week 12 - Laziness

e Fibonacci Numbers

HZ (ICSQUIBK) =3 15/24

Week 12 - Laziness Fibonacci Numbers

Recall

Definition (i-th Fibonacci number F;)

0 ifi=0
FF=<1 ifi=1
Fi_1+ Fi_» otherwise

HZ (ICSQUIBK) =3 16/24

Week 12 - Laziness Fibonacci Numbers

Recall

Definition (i-th Fibonacci number F;)

0 ifi=0
FF=<1 ifi=1
Fi_1+ Fi_» otherwise

Sequence
01123581321 345589 144 233 377 610 987 1597 2584 ...

HZ (ICS@UIBK) FP 16/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | 0 1

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 | 0 1
startingat 1 | 1

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 | 0 1
startingat 1 | 1

(+H)

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 | 0 1
startingat 1 | 1

(+H)

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 | 0 1
startingat 1 | 1

(+)]1

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 ([0 1 1
startingatl |1 1
(+) |1

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 ([0 1 1
startingatl |1 1
(+) |1

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O 1

startingat 1 | 1
1

1
1
(+H) 2

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O 2

startingat 1 | 1
1

11
1 2
(+H) 2

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O 2

startingat 1 | 1
1

11
1 2
(+H) 2

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O 2

startingat 1 | 1
1

1 1
1 2
(+) 2 3

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O
startingat 1 | 1
1

1
1
(+) 2

W N =
w N

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O
startingat 1 | 1
1

1
1
(+) 2

W N =
w N

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 (0 1 1 2 3
startingat1l |1 1 2 3
(+)|1 2 3 5

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 ([0 1 1 2 3 5
startingat1l |1 1 2 3 5
(+)|1 2 3 5

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 ([0 1 1 2 3 5
startingatl |1 1 2 3 5
(+)|1 2 3 5

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 ([0 1 1 2 3 5
startingat1l |1 1 2 3 5
(+)|1 2 3 5 8

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O
startingat 1 | 1
1

1 1
1 2
(+) 2 3

1w N
o 01 W
oo O

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O
startingat 1 | 1
1

1 1
1 2
(+) 2 3

1w N
o 01 W
o o1

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8
startingatl (1 1 2 3 5 §
(+)|1 2 3 5 8 13

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13
startingatl |1 1 2 3 5 8§ 13
(+)|1 2 3 5 8 13

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13
startingatl |1 1 2 3 5 8§ 13
(+)|1 2 3 5 8 13

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13
startingatl |1 1 2 3 5 8§ 13
(+)|1 2 3 5 8 13 21

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13 21
startingat1l |1 1 2 3 5 8§ 13 21
(+)|1 2 3 5 8 13 21

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13 21
startingat1l |1 1 2 3 5 8§ 13 21
(+)|1 2 3 5 8 13 21

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13 21
startingat1l |1 1 2 3 5 8§ 13 21
(+)|1 2 3 5 8 13 21 34

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

startingat0 |0 1 1 2 3 5 8 13 21
startingat1l |1 1 2 3 5 8§ 13 21
(+)|1 2 3 5 8 13 21 34

HZ (ICSQUIBK) =3 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O 13 21 ...

startingat 1 | 1
1

(+)

v

e function to shift sequence to the left

1 1
1 2
2 3

1w N
0 01 W
= 00 O1
(=Y
w
N
[t

HZ (ICS@UIBK) FP 17/24

Week 12 - Laziness Fibonacci Numbers

Visualization

starting at 0 | O 13 21 ...

startingat 1 | 1
1

(+)

v

e function to shift sequence to the left

1 1
1 2
2 3

1w N
0 01 W
= 00 O1
(=Y
w
N
[t

e function to add two sequences

HZ (ICS@UIBK) FP 17/24

Week 12 - Laziness Fibonacci Numbers

Implementation (in module UnitList)

let tl xs = match xs() with Nil -> failwith "empty"
| Cons(_,xs) -> xs

let rec zip_with f xs ys = fun() -> match (xs(),ys()) with

| (Cons(x,xs),Cons(y,ys)) -> Cons(f x y,zip_with f xs ys)

I -> Nil
let rec fibs =

fun() -> Cons(0,fun() -> Cons(l, zip_with (+) fibs (t1l fibs)))

HZ (ICSQUIBK) =3 18/24

Week 12 - Laziness Fibonacci Numbers

Implementation (in module UnitList)

let tl xs = match xs() with Nil -> failwith "empty"
| Cons(_,xs) -> xs

let rec zip_with f xs ys = fun() -> match (xs(),ys()) with

| (Cons(x,xs),Cons(y,ys)) -> Cons(f x y,zip_with f xs ys)

I -> Nil
let rec fibs =

fun() -> Cons(0,fun() -> Cons(l, zip_with (+) fibs (t1l fibs)))

to_list 10 fibs
- : int list = [0; 1; 1; 2; 3; 5; 8; 13; 21; 34]

HZ (ICSQUIBK) =3 18/24

Week 12 - Laziness Fibonacci Numbers

Not Lazy Enough

e we defer computation (i.e., call-by-name evaluation)

HZ (ICSQUIBK) FP 19/24

Week 12 - Laziness Fibonacci Numbers

Not Lazy Enough

e we defer computation (i.e., call-by-name evaluation)

e we do not use memoization

HZ (ICSQUIBK) FP 19/24

Week 12 - Laziness Fibonacci Numbers

Not Lazy Enough

e we defer computation (i.e., call-by-name evaluation)

e we do not use memoization

Memoization

e prohibit recomputation of equal expressions

HZ (ICS@UIBK) FP 19/24

Week 12 - Laziness Fibonacci Numbers

Not Lazy Enough

e we defer computation (i.e., call-by-name evaluation)

e we do not use memoization

Memoization

e prohibit recomputation of equal expressions

e built-in in OCaml's support for lazyness

HZ (ICS@UIBK) (AP 19/24

Week 12 - Laziness The Sieve of Eratosthenes

@ Week 12 - Laziness

o.The Sieve of Eratosthenes

HZ (ICS@UIBK) (AP 20/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml

Keyword lazy

used to transform arbitrary expression into lazy expression

HZ (ICS@UIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml

Keyword lazy

used to transform arbitrary expression into lazy expression

HZ (ICS@UIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml

Keyword lazy

used to transform arbitrary expression into lazy expression

e let e = lazy(print_string "test\n")

HZ (ICS@UIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml
Keyword lazy
used to transform arbitrary expression into lazy expression

e let e
e let £

lazy(print_string "test\n")
lazy(let rec f() = print_int 1;£f() in £Q))

HZ (ICS@UIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml
Keyword lazy
used to transform arbitrary expression into lazy expression

e let e
e let £

lazy(print_string "test\n")
lazy(let rec f() = print_int 1;£f() in £Q))

Function Lazy.force

used to evaluate lazy expressions

HZ (ICS@UIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml
Keyword lazy
used to transform arbitrary expression into lazy expression

e let e
e let £

lazy(print_string "test\n")
lazy(let rec f() = print_int 1;£f() in £Q))

Function Lazy.force
used to evaluate lazy expressions

HZ (ICSQUIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml
Keyword lazy
used to transform arbitrary expression into lazy expression

e let e
e let £

lazy(print_string "test\n")
lazy(let rec f() = print_int 1;£f() in £Q))

Function Lazy.force
used to evaluate lazy expressions

e Lazy.force e

HZ (ICS@UIBK) (AP 21/24

Week 12 - Laziness The Sieve of Eratosthenes

Lazyness in OCaml
Keyword lazy
used to transform arbitrary expression into lazy expression

e let e
e let £

lazy(print_string "test\n")
lazy(let rec f() = print_int 1;£f() in £Q))

Function Lazy.force

used to evaluate lazy expressions

e Lazy.force e

e Lazy.force f

HZ (ICS@UIBK) (AP 21/24

Lazy Lists Again (module LazyList)

type ’a t
and ’a cell

’a cell Lazy.t
Nil | Cons of (’a * ’a t)

HZ (ICS@UIBK) (AP 22/24

Lazy Lists Again (module LazyList)

type ’a t
and ’a cell

’a cell Lazy.t
Nil | Cons of (’a * ’a t)

lazy Nil (0)
lazy (Cons(1, lazy Nil)) ([11)
lazy (Cons(2, lazy (Cons(1l, lazy Nil)))) ([2;1])

HZ (ICS@UIBK) (AP 22/24

The Sieve of Eratosthenes (module LazyList)

Algorithm

start with list of all natural numbers (from 2 on)

1. mark first element h as prime
2. remove all multiples of h
3. goto Step 1

HZ (ICS@UIBK) (AP 23/24

Week 12 - Laziness The Sieve of Eratosthenes

The Sieve of Eratosthenes (module LazyList)

Algorithm

start with list of all natural numbers (from 2 on)

1. mark first element h as prime
2. remove all multiples of h
3. goto Step 1

Functions

let fc = Lazy.force

HZ (ICS@UIBK) (AP 23/24

Week 12 - Laziness The Sieve of Eratosthenes

The Sieve of Eratosthenes (module LazyList)

Algorithm

start with list of all natural numbers (from 2 on)

1. mark first element h as prime
2. remove all multiples of h
3. goto Step 1

Functions

let fc = Lazy.force

let rec from n = lazy(Cons(n,from(n+1)))

HZ (ICS@UIBK) (AP 23/24

Week 12 - Laziness The Sieve of Eratosthenes

The Sieve of Eratosthenes (module LazyList)

Algorithm

start with list of all natural numbers (from 2 on)

1. mark first element h as prime
2. remove all multiples of h
3. goto Step 1

Functions
let fc = Lazy.force
let rec from n = lazy(Cons(n,from(n+1)))

let rec to_list n xs = if n < 1 then [] else match fc xs with
| Nil -> []
| Cons(x,xs) -> x :: to_list (n-1) xs

HZ (ICS@UIBK) (AP 23/24

The Sieve of Eratosthenes (module LazyList cont'd)

let rec filter p xs = lazy(match fc xs with
| Nil -> Nil
| Cons(x,xs) -> if p x then Cons(x,filter p xs)
else fc(filter p xs)

HZ (ICS@UIBK) (AP 24/24

The Sieve of Eratosthenes (module LazyList cont'd)

let rec filter p xs = lazy(match fc xs with
| Nil -> Nil
| Cons(x,xs) -> if p x then Cons(x,filter p xs)
else fc(filter p xs)

let rec sieve xs = lazy(match fc xs with
| Nil -> Nil
| Cons(x,xs) —->
Cons(x,sieve(filter (fun y -> y mod x <> 0) xs))

)

HZ (ICS@UIBK) (AP 24/24

Week 12 - Laziness The Sieve of Eratosthenes

The Sieve of Eratosthenes (module LazyList cont'd)

let rec filter p xs = lazy(match fc xs with
| Nil -> Nil
| Cons(x,xs) -> if p x then Cons(x,filter p xs)
else fc(filter p xs)

let rec sieve xs = lazy(match fc xs with
| Nil -> Nil
| Cons(x,xs) —->
Cons(x,sieve(filter (fun y -> y mod x <> 0) xs))

)

let primes = sieve(from 2)

HZ (ICS@UIBK) (AP 24/24

	Week 12 - Laziness
	Summary of Weeks 10 & 11
	Lazy Lists
	Fibonacci Numbers
	The Sieve of Eratosthenes

