First Exam
 Gödel's Incompleteness Theorem, LVA 703919

February 8, 2012

Name: Number of Studies: Studentnumber:

The exam consists of 5 exercises with a total of 50 points. Please fill out your name and credentials before you start the exam.

1. Suppose \mathcal{L} is a correct system such that the following two conditions hold, where P denotes the set of Gödel numbers of the provable sentences of \mathcal{L}.

- The set P^{*} is expressible in \mathcal{L}.
- For any predicate H, there is a predicate H^{\prime} such that for every n, the sentence $H^{\prime}(n)$ is provable in \mathcal{L} iff $H(n)$ is refutable in \mathcal{L}.
Show that \mathcal{L} is incomplete.

2. Consider a set $A \supseteq R^{*}$ such that $A \cap P^{*}=\varnothing$ and A is representable in \mathcal{L}. Here P is defined as above, and R denotes the set of Gödel numbers of refutable sentences of \mathcal{L}.
a) Show that \mathcal{L} is consistent.
b) Show that \mathcal{L} is incomplete
3. Consider the language \mathcal{L} of PA . Suppose the expression formula (x) shall denote that E_{x} is a formula. Explain informally (but in precise terms) what is necessary to give an arithmetisation of formula (x).
You may use any part of the arithmetisation you remember, in particular you can assume that $\ulcorner E\urcorner$ denotes the Gödel number of E.
4. Recall the following:

- A relation $R(x, y)$ is recursive if $R(x, y)$ and $\sim R(x, y)$ is Σ_{1}.
- Similarly, a function f is recursive if its graph is recursive.

Show that for any recursive relation $R(x, y)$ and any recursive function $f(x)$, the following relation is recursive:

$$
Q(x):=(\exists y \leqslant f(x)) R(x, y)
$$

5. Determine whether the following statements are true or false. Every correct answer is worth 1 points (and every wrong -1 points).

Let \mathcal{S} be any extension of PA. If \mathcal{S} is consistent, then \mathcal{S} is incomplete.
if \mathcal{L} is correct and if $(\sim P)^{*}$ is expressible in \mathcal{L}, then \mathcal{L} is complete.

The set T of Gödel numbers of the true arithmetic sentences is arithmetic.

The relation $x^{y}=z$ is Σ_{0}.

All true Σ_{0}-sentences of Robinson's Q are provable in PA.

Suppose the system \mathcal{S} is consistent and all true Σ_{0}-sentences are provable. This
 does not imply that all provable Σ_{0}-sentences are true.

Suppose $F\left(v_{1}\right)$ separates A from B in \mathcal{S} and \mathcal{S} is consistent, then $F\left(v_{1}\right)$ repre- \square
 sents some superset of A disjoint from B.

Every extension \mathcal{S} of Ω_{4}, Ω_{5} in which all Σ_{1}-relations are enumerable is a Rosser
 system.

Rosser's theorem states that every ω-consistent extension of Ω_{4}, Ω_{5} in which all
 Σ_{1}-sets are enumerable must be incomplete.

Suppose PA is consistent. Then consistency of PA is not provable in any extension of PA.

