- 1. Solution. Let $H(v_1)$ express the set P^* and let $H'(v_1)$ be the predicate according to the assumption. Furthermore we write $\lceil E \rceil$ for the Gödel number of E. We observe the following:
 - $H(\overline{n})$ holds iff $n \in P^*$.
 - $H'(\overline{n})$ is provable iff $H(\overline{n})$ is refutable.
 - If $h' := \lceil H'(v_1) \rceil$, then H(h') holds iff H(h') is refutable.

Now, suppose H(h') is provable, thus H(h') holds by correctness and then H(h') is refutable, which is a contradiction. Similarly, if H(h') is refutable, then H(h') holds, which contradicts correctness. Hence \mathcal{L} is incomplete.

- 2. Solution. It is easy to see that the assumptions imply that \mathcal{L} is consistent. Hence, we only give the proof of b). Suppose $F(v_1)$ represents A and $f := \lceil F(v_1) \rceil$. Then we have
 - F(f) is provable iff $f \in A$.
 - F(f) is provable iff $f \in P^*$.

Hence we obtain $f \in P^*$ iff $f \in A$. Thus $f \notin A$ and $f \notin P^*$. From this observation it follows that F(f) is neither provable, nor refutable.

- 3. Solution. See §3 in Chapter 2 of Smullyan's book.
- 4. Solution. By assumption, there exists Σ_0 -formulas $S_0(v_1, v_2, v_3)$ and $S_1(v_1, v_2, v_3)$ such that we have the following:

$$R(m,n) \text{ holds} \leftrightarrow \exists z S_0(\overline{m},\overline{n},z)$$
$$R(m,n) \text{ does not hold} \leftrightarrow \exists z S_1(\overline{m},\overline{n},z)$$

Moreover, there exists a formula $G(v_1, v_2, v_3)$ such that f(m) = y iff $\exists z G(\overline{m}, \overline{n}, z)$. We show that Q(x) is Σ_1 and that $\sim Q(x)$ is Σ_1 as follows:

$$Q(m) \text{ holds} \leftrightarrow \exists z \exists v \exists w \left(G(\overline{m}, z, v) \land (\exists y \leqslant z) S_0(\overline{m}, y, w) \right)$$
$$Q(m) \text{ does not holds} \leftrightarrow \exists z \exists v \exists w \left(G(\overline{m}, z, v) \land (\forall y \leqslant z) (\exists u \leqslant w) S_1(\overline{m}, y, u) \right)$$

Note that for the second formula the existential quantifier bounding w in $S_1(\overline{m}, y, u)$ cannot be directly move in front of the bounded quantifier ($\forall y \leq z$). Hence the need for this seemingly artificial bounded quantifier ($\exists u \leq w$), cf. Chapter 4, Section 2 in Smullyan's book.

Clearly the formulas to the right are equivalent to Σ_1 -sentences. Hence the claim follows.

Solution.

statement

Let \mathcal{S} be any extension of PA. If \mathcal{S} is consistent, then \mathcal{S} is incomplete.

if \mathcal{L} is correct and if $(\sim P)^*$ is expressible in \mathcal{L} , then \mathcal{L} is complete.

The set T of Gödel numbers of the true arithmetic sentences is arithmetic.

The relation $x^y = z$ is Σ_0 .

All true Σ_0 -sentences of Robinson's Q are provable in PA.

Suppose the system S is consistent and all true Σ_0 -sentences are provable. This does not imply that all provable Σ_0 -sentences are true.

Suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B.

Every extension S of Ω_4, Ω_5 in which all Σ_1 -relations are enumerable is a Rosser system.

Rosser's theorem states that every ω -consistent extension of Ω_4, Ω_5 in which all Σ_1 -sets are enumerable must be incomplete.

Suppose PA is consistent. Then consistency of PA is not provable in any extension of PA.

 \mathbf{yes}

 \checkmark

no

 \checkmark

 \checkmark

_	

 \checkmark

 \checkmark

 \checkmark