Problem Set 1 (for October 20)

The problems will be discussed on October 20. We use the notation of the lecture.

- Suppose \mathcal{L} is a correct system such that the following two conditions hold.
 - 1. The set P^* is expressible in \mathcal{L} .
 - 2. For any predicate H, there is a predicate H' such that for every n, the sentence H'(n) is provable in \mathcal{L} iff H(n) is refutable in \mathcal{L} .

Show that \mathcal{L} is incomplete.

• We say that a predicate H represents a set A in \mathcal{L} if for every number n, the sentence H(n) is provable in \mathcal{L} iff $n \in A$.

Suppose \mathcal{L} is consistent. Show that if the set R^* is representable in \mathcal{L} , then \mathcal{L} is incomplete.

• Let us say that a predicate H contrarepresents of a set A in \mathcal{L} if for every number n, the sentence H(n) is refutable in \mathcal{L} iff $n \in A$. Show that if the P^* is contrarepresentable in \mathcal{L} and \mathcal{L} is consistent, then \mathcal{L} is incomplete.