Problem Set 1 (for October 20)

The problems will be discussed on October 20. We use the notation of the lecture.

- Suppose \mathcal{L} is a correct system such that the following two conditions hold.

1. The set P^{*} is expressible in \mathcal{L}.
2. For any predicate H, there is a predicate H^{\prime} such that for every n, the sentence $H^{\prime}(n)$ is provable in \mathcal{L} iff $H(n)$ is refutable in \mathcal{L}.
Show that \mathcal{L} is incomplete.

- We say that a predicate H represents a set A in \mathcal{L} if for every number n, the sentence $H(n)$ is provable in \mathcal{L} iff $n \in A$.

Suppose \mathcal{L} is consistent. Show that if the set R^{*} is representable in \mathcal{L}, then \mathcal{L} is incomplete.

- Let us say that a predicate H contrarepresents of a set A in \mathcal{L} if for every number n, the sentence $H(n)$ is refutable in \mathcal{L} iff $n \in A$. Show that if the P^{*} is contrarepresentable in \mathcal{L} and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

