

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Homework

- Chapter V, Exercise 9
- Chapter V, Exercise 10
- Chapter V, Exercise 11
- Chapter V, Exercise 12
- Chapter VI, Exercise 3 (postpone)
- Chapter VI, Exercise 4 (postpone)

Summary of Last Lecture

Definition (Q) $v_1' = v_2' \rightarrow v_1 = v_2$ N_1 : $\overline{0} \neq v_1'$ N_2 : $(v_1 + \overline{0}) = v_1$ N3: $(v_1 + v_2') = (v_1 + v_2)'$ *N*[⊿] : $(v_1 \cdot \overline{0}) = \overline{0}$ N_5 : $(v_1 \cdot v_2') = ((v_1 \cdot v_2) + v_1)$ N_6 : $(v_1 \leq \overline{0}) \leftrightarrow (v_1 = \overline{0})$ N₇: N_8 : $(v_1 \leq v_2') \leftrightarrow (v_1 \leq v_2 \lor v_1 = v_2')$ N_0 : $(v_1 \leq v_2) \lor (v_2 \leq v_1)$

let Q_0 be Q without the axiom N_9

Definition (R)

$$\begin{split} \Omega_1: & \overline{m} + \overline{n} = \overline{k} & \text{if } m + n = k \\ \Omega_2: & \overline{m} \cdot \overline{n} = \overline{k} & \text{if } m \cdot n = k \\ \Omega_3: & \overline{m} \neq \overline{n} & \text{if } m \neq n \\ \Omega_4: & v_1 \leqslant \overline{n} \leftrightarrow (v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n}) \\ \Omega_5: & v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1 \end{split}$$

let R_0 be R without the schema Ω_5

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

ω-consistency, a basic incompleteness theorem, ω-consistency lemma, $Σ_0$ complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Proof.

it suffices to show the following properties:

- $D_1 \ \forall$ true atomic Σ_0 -sentence A, A is provable
- $D_2 \forall m, n: m \neq n: S \vdash \overline{m} \neq \overline{n}$
- $D_3 \forall$ variable $w, \forall n \in \mathbb{N}$:

$$\mathcal{S} \vdash w \leqslant \overline{n} \rightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n})$$

we consider the three properties:

Proof.

it suffices to show the following properties:

- $D_1 \hspace{0.1 cm} \forall \hspace{0.1 cm} {\sf true} \hspace{0.1 cm} {\sf atomic} \hspace{0.1 cm} \Sigma_0 {\sf -sentence} \hspace{0.1 cm} {\it A}, \hspace{0.1 cm} {\it A} \hspace{0.1 cm} {\sf is} \hspace{0.1 cm} {\sf provable}$
- $D_2 \forall m, n: m \neq n: S \vdash \overline{m} \neq \overline{n}$
- $D_3 \forall$ variable *w*, $\forall n \in \mathbb{N}$:

$$\mathcal{S} \vdash w \leqslant \overline{n} \rightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n})$$

we consider the three properties:

• proof of D_1 on the whiteboard

Proof.

it suffices to show the following properties:

 $D_1 \ \forall \text{ true atomic } \Sigma_0 \text{-sentence } A, A \text{ is provable}$

$$D_2 \quad \forall m, n: m \neq n: S \vdash \overline{m} \neq \overline{n}$$

 $D_3 \forall$ variable *w*, $\forall n \in \mathbb{N}$:

$$\mathcal{S} \vdash w \leqslant \overline{n} \rightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n})$$

we consider the three properties:

- proof of D_1 on the whiteboard
- D_2 follows from axiom schemata Ω_3

Proof.

it suffices to show the following properties:

 $D_1 \ \forall$ true atomic Σ_0 -sentence A, A is provable

$$D_2 \quad \forall m, n: m \neq n: S \vdash \overline{m} \neq \overline{n}$$

 $D_3 \forall$ variable *w*, $\forall n \in \mathbb{N}$:

$$\mathcal{S} \vdash w \leqslant \overline{n} \rightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n})$$

we consider the three properties:

- proof of D_1 on the whiteboard
- D_2 follows from axiom schemata Ω_3
- D_3 follows from axiom schemata Ω_4

 R_0 is a subsystem of Q_0

 R_0 is a subsystem of Q_0

Proof.

we need to show that Q_0 can prove the following schemata:

$$\Omega_1 \ \overline{m} + \overline{n} = \overline{k}$$
, if $m + n = k$

 R_0 is a subsystem of Q_0

Proof.

we need to show that Q_0 can prove the following schemata:

$$\Omega_1 \quad \overline{m} + \overline{n} = \overline{k}, \text{ if } m + n = k$$

$$\Omega_2 \quad \overline{m} \cdot \overline{n} = \overline{k}, \text{ if } m \cdot n = k$$

 R_0 is a subsystem of Q_0

Proof.

we need to show that Q_0 can prove the following schemata:

$$\Omega_1 \ \overline{m} + \overline{n} = \overline{k}, \text{ if } m + n = k$$

$$\Omega_2 \ \overline{m} \cdot \overline{n} = \overline{k}, \text{ if } m \cdot n = k$$

$$\Omega_3 \ \overline{m} \neq \overline{n}, \text{ if } m \neq n$$

 R_0 is a subsystem of Q_0

Proof.

we need to show that Q_0 can prove the following schemata:

$$\Omega_1 \quad \overline{m} + \overline{n} = \overline{k}, \text{ if } m + n = k$$

$$\Omega_2 \quad \overline{m} \cdot \overline{n} = \overline{k}, \text{ if } m \cdot n = k$$

$$\Omega_3 \quad \overline{m} \neq \overline{n}, \text{ if } m \neq n$$

$$\Omega_4 \quad v_1 \leqslant \overline{n} \leftrightarrow (v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n})$$

 R_0 is a subsystem of Q_0

Proof.

we need to show that Q_0 can prove the following schemata:

$$\Omega_1 \quad \overline{m} + \overline{n} = \overline{k}, \text{ if } m + n = k$$

$$\Omega_2 \quad \overline{m} \cdot \overline{n} = \overline{k}, \text{ if } m \cdot n = k$$

$$\Omega_3 \quad \overline{m} \neq \overline{n}, \text{ if } m \neq n$$

$$\Omega_4 \quad v_1 \leqslant \overline{n} \leftrightarrow (v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n})$$

on the whiteboard

Corollary

R is a subsystem of Q

Theorem

the systems R_0 , R, Q_0 , Q, and PA are Σ_0 -complete

Theorem the systems R_0 , R, Q_0 , Q, and PA are Σ_0 -complete

Definition

a system S is Σ_0 -complete if all true Σ_0 -sentences are provable in S

Theorem the systems R_0 , R, Q_0 , Q, and PA are Σ_0 -complete

Definition

a system ${\mathcal S}$ is $\Sigma_0\text{-complete}$ if all true $\Sigma_0\text{-sentences}$ are provable in ${\mathcal S}$

Recall Theorem 2

all true Σ_0 -sentences (of PA) are provable in PA

Theorem the systems R_0 , R, Q_0 , Q, and PA are Σ_0 -complete

Definition

a system ${\mathcal S}$ is $\Sigma_0\text{-complete}$ if all true $\Sigma_0\text{-sentences}$ are provable in ${\mathcal S}$

Recall Theorem ⁽²⁾ all true Σ_0 -sentences (of PA) are provable in PA

thus finally, we have proved:

Theorem

if PA is ω -consistent, then it is incomplete

Midterm Quiz

- a sentence S is decidable in S if it either provable or refutable
- S is complete if ∀ sentences S, S is decidable; otherwise S is incomplete

Midterm Quiz

- a sentence S is decidable in S if it either provable or refutable
- S is complete if ∀ sentences S, S is decidable; otherwise S is incomplete

consider the following

Definition

let S be an arbitrary axiom system (aka theory) and S a sentence

- we write $\mathcal{S}\models S$ if for all interpretation $\mathcal I$ that model $\mathcal S,$ we have $\mathcal I\models S$
- S is Complete if ∀ sentences S, we have S ⊨ S or S ⊭ S; otherwise S is Incomplete

Question

Is the following correct? "if PA is ω -consistent, then it is Incomplete"

suppose:

- **1** S is consistent
- **2** all true Σ_0 -sentences are provable

then all provable Σ_0 -sentences are true; in particular this holds for PA

Proof. by definition of consistency

suppose:

- **1** S is consistent
- **2** all true Σ_0 -sentences are provable

then all provable Σ_0 -sentences are true; in particular this holds for PA

Proof. by definition of consistency

Lemma

suppose:

- 1 S is consistent and all true Σ_0 -sentences are provable
- **2** S contains a Σ_0 -formula $F(v_1, v_2)$ that enumerates P^*

3 let
$$G := \forall v_2 \neg F(\overline{f}, v_2)$$
, where $f := \ulcorner \forall v_2 \neg F(v_1, v_2) \urcorner$

then Gödel's sentence G is true

Corollary

if S is consistent, then Gödel's sentence G is not provable in S, but true

Corollary if S is consistent, then Gödel's sentence G is not provable in S, but true

Definition

a system S is ω -incomplete, if \exists formula $F(v_1)$, such that

$$\mathcal{S} \vdash F(\overline{0}), \ldots \mathcal{S} \vdash F(\overline{n}), \ldots$$

Corollary if S is consistent, then Gödel's sentence G is not provable in S, but true

Definition

a system S is ω -incomplete, if \exists formula $F(v_1)$, such that

$$\mathcal{S} \vdash F(\overline{0}), \ldots \mathcal{S} \vdash F(\overline{n}), \ldots$$

yet $\mathcal{S} \not\vdash \forall v_1 F(v_1)$

Corollary if S is consistent, then Gödel's sentence G is not provable in S, but true

Definition

a system S is ω -incomplete, if \exists formula $F(v_1)$, such that

$$\mathcal{S} \vdash F(\overline{0}), \ldots \mathcal{S} \vdash F(\overline{n}), \ldots$$

yet $\mathcal{S} \not\vdash \forall v_1 F(v_1)$

Theorem

if S is a consistent axiomatisable system in which all Σ_0 -sentences are provable, then S is ω -incomplete