	Homework
Computational	Homework
Gödel's Incompleteness Theorem Georg Moser Institute of Computer Science @ UIBK Winter 2011	 Chapter V, Exercise 9 Chapter V, Exercise 10 Chapter V, Exercise 11 Chapter V, Exercise 12 Chapter VI, Exercise 3 (postpone) Chapter VI, Exercise 4 (postpone)
Summary of Last Lecture Definition (Q) $N_1: v'_1 = v'_2 \rightarrow v_1 = v_2$ $N_2: \overline{0} \neq v'_1$ $N_3: (v_1 + \overline{0}) = v_1$ $N_4: (v_1 + v'_2) = (v_1 + v_2)'$ $N_5: (v_1 \cdot \overline{0}) = \overline{0}$ $N_6: (v_1 \cdot v'_2) = ((v_1 \cdot v_2) + v_1)$ $N_7: (v_1 \leq \overline{0}) \leftrightarrow (v_1 = \overline{0})$ $N_8: (v_1 \leq v'_2) \leftrightarrow (v_1 \leq v_2 \lor v_1 = v'_2)$ $N_9: (v_1 \leq v_2) \lor (v_2 \leq v_1)$ Let Q_0 be Q without the axiom N_9	Summary of Last Lecture Definition (R) $\Omega_{1}: \overline{m} + \overline{n} = \overline{k} \text{if } m + n = k$ $\Omega_{2}: \overline{m} \cdot \overline{n} = \overline{k} \text{if } m \cdot n = k$ $\Omega_{3}: \overline{m} \neq \overline{n} \text{if } m \neq n$ $\Omega_{4}: v_{1} \leq \overline{n} \leftrightarrow (v_{1} = \overline{0} \lor \cdots \lor v_{1} = \overline{n})$ $\Omega_{5}: v_{1} \leq \overline{n} \lor \overline{n} \leq v_{1}$ let R_{0} be R without the schema Ω_{5}

Outline	
Outline	
General	
abatuaat	

General Idea Behind Gödel's Proof abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}

Tarski's Theorem for Arithmetic

of the Lecture

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

ω-consistency, a basic incompleteness theorem, ω-consistency lemma, $Σ_0$ complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Lemma

 R_0 is Σ_0 -complete

Proof.

it suffices to show the following properties:

- $D_1 \ \forall$ true atomic Σ_0 -sentence A, A is provable
- $D_2 \forall m, n: m \neq n: S \vdash \overline{m} \neq \overline{n}$
- $D_3 \forall$ variable $w, \forall n \in \mathbb{N}$:

$$\mathcal{S} \vdash w \leqslant \overline{n} \rightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n})$$

we consider the three properties:

- proof of D_1 on the whiteboard
- D_2 follows from axiom schemata Ω_3
- D_3 follows from axiom schemata Ω_4

M (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem $10/16$	$ \begin{array}{ll} {\sf GM} \mbox{ (Institute of Computer Science @ UIBK)} & {\sf G\"odel's Incompleteness Theorem} & 11/16 \\ {\sf \Sigma}_0\mbox{-completeness of PA} & & \\ \end{array} $
Lemma R_0 is a subsystem of Q_0 Proof. we need to show that Q_0 can prove the following schemata: $\Omega_1 \ \overline{m} + \overline{n} = \overline{k}$, if $m + n = k$ $\Omega_2 \ \overline{m} \cdot \overline{n} = \overline{k}$, if $m + n = k$ $\Omega_3 \ \overline{m} \neq \overline{n}$, if $m \neq n$ $\Omega_4 \ v_1 \leq \overline{n} \leftrightarrow (v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n})$ on the whiteboard	$\Sigma_{0}\text{-completeness of PA}$ Theorem the systems R_{0} , R , Q_{0} , Q , and PA are $\Sigma_{0}\text{-complete}$ Definition a system S is $\Sigma_{0}\text{-complete}$ if all true $\Sigma_{0}\text{-sentences}$ are provable in S Recall Theorem @ all true $\Sigma_{0}\text{-sentences}$ (of PA) are provable in PA thus finally, we have proved: Theorem
R is a subsystem of Q	if PA is ω -consistent, then it is incomplete

Midterm Quiz	Discussion
	Lemma suppose: a S is consistent all true Σ_0 -sentences are provable then all provable Σ_0 -sentences are true; in particular this holds for PA Proof. by definition of consistency Lemma suppose: a S is consistent and all true Σ_0 -sentences are provable 2 S contains a Σ_0 -formula $F(v_1, v_2)$ that enumerates P^* b let $G := \forall v_2 \neg F(\overline{f}, v_2)$, where $f := \neg \forall v_2 \neg F(v_1, v_2) \neg$ then Gödel's sentence G is true
Horompleteness <i>C</i> orollary <i>if S is consistent</i> , <i>then Gödel's sentence G is not provable in S</i> , <i>but true</i> Definition a system <i>S</i> is <i>ω</i> -incomplete, if ∃ formula <i>F</i> (<i>v</i> ₁), such that $S \vdash F(\bar{0}),, S \vdash F(\bar{n}),$ yet $S \not\vdash \forall v_1 F(v_1)$ Theorem <i>if S is a consistent axiomatisable system in which all</i> Σ ₀ - <i>sentences are</i> <i>provable</i> , <i>then S is ω</i> - <i>incomplete</i> .	