

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Homework

- Chapter VI, Exercise 3
- Chapter VI, Exercise 4

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Previous Results

Definition

let g be a bijection such that

g(E) := Gödel number of expression E

Previous Results

Definition let g be a bijection such that

g(E) := Gödel number of expression E

Theorem (Abstract Gödel's Theorem)

suppose \mathcal{L} is correct and $P := \{g(S) \mid S \in \mathcal{P}\}$ such that $(\sim P)^*$ is expressible in \mathcal{L} ; then \exists a true sentence of \mathcal{L} , not provable in \mathcal{L}

Previous Results

Definition let g be a bijection such that

g(E) := Gödel number of expression E

Theorem (Abstract Gödel's Theorem)

suppose \mathcal{L} is correct and $P := \{g(S) \mid S \in \mathcal{P}\}$ such that $(\sim P)^*$ is expressible in \mathcal{L} ; then \exists a true sentence of \mathcal{L} , not provable in \mathcal{L}

Definition (PA)

. . .

$$N_{12}: \qquad F[\overline{0}] \to (\forall v_1(F(v_1) \to F[v_1']) \to \forall v_1F(v_1))$$

Theorem if PA is correct, then PA is incomplete

Theorem *if* PA *is correct, then* PA *is incomplete*

Theorem *if* PA *is* ω *-consistent, then it is incomplete*

Theorem *if* PA *is correct, then* PA *is incomplete*

Theorem *if* PA *is* ω *-consistent, then it is incomplete*

Theorem (Gödel's First Incompleteness Theorem) Let S be an extension of PA. If S is consistent, then S is incomplete Theorem *if* PA *is correct, then* PA *is incomplete*

Theorem *if* PA *is* ω *-consistent, then it is incomplete*

Theorem (Gödel's First Incompleteness Theorem) Let S be an extension of PA. If S is consistent, then S is incomplete

how to fill the gap between ω -consistency and consistency

$$\begin{aligned} \Omega_4: & v_1 \leqslant \overline{n} \leftrightarrow (v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n}) \\ \Omega_5: & v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1 \end{aligned}$$

$$\begin{aligned} \Omega_4: & v_1 \leqslant \overline{n} \leftrightarrow \left(v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n}\right) \\ \Omega_5: & v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1 \end{aligned}$$

Theorem (Rosser's Theorem)

every consistent extension of Ω_4,Ω_5 in which all $\Sigma_1\text{-sets}$ are enumerable must be incomplete

$$\begin{aligned} \Omega_4: & v_1 \leqslant \overline{n} \leftrightarrow \left(v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n}\right) \\ \Omega_5: & v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1 \end{aligned}$$

Theorem (Rosser's Theorem)

every consistent extension of Ω_4,Ω_5 in which all Σ_1 -sets are enumerable must be incomplete

Corollary

every consistent extension of Ω_4, Ω_5 which is Σ_0 -complete must be incomplete

$$\begin{aligned} \Omega_4: & v_1 \leqslant \overline{n} \leftrightarrow \left(v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n}\right) \\ \Omega_5: & v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1 \end{aligned}$$

Theorem (Rosser's Theorem)

every consistent extension of Ω_4,Ω_5 in which all Σ_1 -sets are enumerable must be incomplete

Corollary

every consistent extension of Ω_4,Ω_5 which is Σ_0 -complete must be incomplete

Corollary

every consistent extension of R is incomplete; hence PA is incomplete

Recall: A Dual to Gödel's Incompleteness

if R^* is representable in $\mathcal S$ and $\mathcal S$ is consistent, then $\mathcal S$ is incomplete

Recall: A Dual to Gödel's Incompleteness

if R^* is representable in $\mathcal S$ and $\mathcal S$ is consistent, then $\mathcal S$ is incomplete

Theorem

if some superset A of R^* disjoint from P^* is representable in S, then S is incomplete; more precisely if $H(v_1)$ represents A, then the sentence $H(\overline{h})$ is undecidable, where $h := \ulcorner H(v_1) \urcorner$

Recall: A Dual to Gödel's Incompleteness

if R^* is representable in $\mathcal S$ and $\mathcal S$ is consistent, then $\mathcal S$ is incomplete

Theorem

if some superset A of R^* disjoint from P^* is representable in S, then S is incomplete; more precisely if $H(v_1)$ represents A, then the sentence $H(\overline{h})$ is undecidable, where $h := \ulcorner H(v_1) \urcorner$

Proof.

on the whiteboard

Recall: A Dual to Gödel's Incompleteness

if R^* is representable in $\mathcal S$ and $\mathcal S$ is consistent, then $\mathcal S$ is incomplete

Theorem

if some superset A of R^* disjoint from P^* is representable in S, then S is incomplete; more precisely if $H(v_1)$ represents A, then the sentence $H(\overline{h})$ is undecidable, where $h := \ulcorner H(v_1) \urcorner$

Proof.

on the whiteboard

Recall: A Dual to Gödel's Incompleteness

if R^* is representable in ${\mathcal S}$ and ${\mathcal S}$ is consistent, then ${\mathcal S}$ is incomplete

Theorem

if some superset A of R^* disjoint from P^* is representable in S, then S is incomplete; more precisely if $H(v_1)$ represents A, then the sentence $H(\overline{h})$ is undecidable, where $h := \ulcorner H(v_1) \urcorner$

Proof.

on the whiteboard

NB: consistency is not necessary as assumption as implied by disjointness of R^* from P^*

a formula $F(v_1)$ separates a set A from a set B in system S, if

- $\forall n \in A$: $F(\overline{n})$ is provable in S
- $\forall n \in B$: $F(\overline{n})$ is refutable in S

a formula $F(v_1)$ separates a set A from a set B in system S, if

- $\forall n \in A$: $F(\overline{n})$ is provable in S
- $\forall n \in B$: $F(\overline{n})$ is refutable in S

Lemma

suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B

a formula $F(v_1)$ separates a set A from a set B in system S, if

- $\forall n \in A$: $F(\overline{n})$ is provable in S
- $\forall n \in B$: $F(\overline{n})$ is refutable in S

Lemma

suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B

Proof.

• let A' be the set represented by $F(v_1)$

a formula $F(v_1)$ separates a set A from a set B in system S, if

- $\forall n \in A$: $F(\overline{n})$ is provable in S
- $\forall n \in B$: $F(\overline{n})$ is refutable in S

Lemma

suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B

Proof.

- let A' be the set represented by $F(v_1)$
- since $\forall n \in A$: $F(\overline{n})$ is provable in S, we have $A \subseteq A'$

a formula $F(v_1)$ separates a set A from a set B in system S, if

- $\forall n \in A$: $F(\overline{n})$ is provable in S
- $\forall n \in B$: $F(\overline{n})$ is refutable in S

Lemma

suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B

Proof.

- let A' be the set represented by $F(v_1)$
- since $\forall n \in A$: $F(\overline{n})$ is provable in *S*, we have $A \subseteq A'$
- suppose $n \in A' \cap B$; then $F(\overline{n})$ is provable and refutable

a formula $F(v_1)$ separates a set A from a set B in system S, if

- $\forall n \in A$: $F(\overline{n})$ is provable in S
- $\forall n \in B$: $F(\overline{n})$ is refutable in S

Lemma

suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B

Proof.

- let A' be the set represented by $F(v_1)$
- since $\forall n \in A$: $F(\overline{n})$ is provable in S, we have $A \subseteq A'$
- suppose $n \in A' \cap B$; then $F(\overline{n})$ is provable and refutable
- hence A' and B are disjoint

Theorem

if $H(v_1)$ separates R^* from P^* in S, then the sentence $H(\overline{h})$ is undecidable in S, where $h := \ulcorner H(v_1) \urcorner$

Theorem

if $H(v_1)$ separates R^* from P^* in S, then the sentence $H(\overline{h})$ is undecidable in S, where $h := \ulcorner H(v_1) \urcorner$

Definition (General Separation)

a formula $F(v_1, \ldots, v_n)$ separates a relation $R_1(x_1, \ldots, x_n)$ from $R_2(x_1, \ldots, x_n)$ in S, if

- $\forall k_1, \ldots, k_n \in \mathbb{N}$ such that $R_1(k_1, \ldots, k_n)$ holds: $F(\overline{k_1}, \ldots, \overline{k_n})$ is provable in S
- $\forall k_1, \ldots, k_n \in \mathbb{N}$ such that $R_1(k_1, \ldots, k_n)$ holds: $F(\overline{k_1}, \ldots, \overline{k_n})$ is refutable in S

Theorem

if $H(v_1)$ separates R^* from P^* in S, then the sentence $H(\overline{h})$ is undecidable in S, where $h := \ulcorner H(v_1) \urcorner$

Definition (General Separation)

a formula $F(v_1, \ldots, v_n)$ separates a relation $R_1(x_1, \ldots, x_n)$ from $R_2(x_1, \ldots, x_n)$ in S, if

- $\forall k_1, \ldots, k_n \in \mathbb{N}$ such that $R_1(k_1, \ldots, k_n)$ holds: $F(\overline{k_1}, \ldots, \overline{k_n})$ is provable in S
- $\forall k_1, \ldots, k_n \in \mathbb{N}$ such that $R_1(k_1, \ldots, k_n)$ holds: $F(\overline{k_1}, \ldots, \overline{k_n})$ is refutable in S

Definition

we say R_1 is separable from R_2 if some formula exists that separates R_1 from R_2

Rosser Systems

Definition (Rosser System)

- a system ${\mathcal S}$ is called Rosser if
 - 1 for any Σ_1 -sets A and B, the set $A \setminus B$ is separable from $B \setminus A$
 - 2 for any Σ_1 -relations $R_1(x_1, \ldots, x_n)$ and $R_2(x_1, \ldots, x_n)$ with n > 1, the relation

$$R_1(x_1,\ldots,x_n) \wedge \neg R_2(x_1,\ldots,x_n) \qquad (R_1 \setminus R_2)$$

is separable from

$$R_2(x_1,\ldots,x_n) \wedge \neg R_1(x_1,\ldots,x_n) \qquad (R_2 \setminus R_1)$$

Rosser Systems

Definition (Rosser System)

- a system ${\mathcal S}$ is called Rosser if
 - 1 for any Σ_1 -sets A and B, the set $A \setminus B$ is separable from $B \setminus A$
 - 2 for any Σ_1 -relations $R_1(x_1, \ldots, x_n)$ and $R_2(x_1, \ldots, x_n)$ with n > 1, the relation

$$R_1(x_1,\ldots,x_n) \wedge \neg R_2(x_1,\ldots,x_n) \qquad (R_1 \setminus R_2)$$

is separable from

$$R_2(x_1,\ldots,x_n) \wedge \neg R_1(x_1,\ldots,x_n) \qquad (R_2 \setminus R_1)$$

Observation

suppose A and B are disjoint $\Sigma_1\text{-sets}$ and $\mathcal S$ is a Rosser system, then A and B are separable in $\mathcal S$

if all formulas in Ω_4 , Ω_5 are provable in \mathcal{S} , then for any two relation

 $R_1(x_1,\ldots,x_n)$ $R_2(x_1,\ldots,x_n)$

that are enumerable in S, $R_1 \setminus R_2$ and $R_2 \setminus R_1$ are separable

if all formulas in Ω_4 , Ω_5 are provable in \mathcal{S} , then for any two relation

$R_1(x_1,\ldots,x_n)$ $R_2(x_1,\ldots,x_n)$

that are enumerable in S, $R_1 \setminus R_2$ and $R_2 \setminus R_1$ are separable

Proof.

on the whiteboard

if all formulas in Ω_4 , Ω_5 are provable in \mathcal{S} , then for any two relation

$R_1(x_1,\ldots,x_n)$ $R_2(x_1,\ldots,x_n)$

that are enumerable in S, $R_1 \setminus R_2$ and $R_2 \setminus R_1$ are separable

Proof.

on the whiteboard

if all formulas in Ω_4 , Ω_5 are provable in \mathcal{S} , then for any two relation

 $R_1(x_1,\ldots,x_n)$ $R_2(x_1,\ldots,x_n)$

that are enumerable in S, $R_1 \setminus R_2$ and $R_2 \setminus R_1$ are separable

Proof.

on the whiteboard

Theorem

every extension ${\cal S}$ of Ω_4,Ω_5 which is $\Sigma_0\text{-complete}$ is a Rosser system

Proof.

if ${\mathcal S}$ is $\Sigma_0\text{-complete, then all }\Sigma_1\text{-relations are enumerable in }{\mathcal S}$