Cogic	Homework • Chapter VI, Exercise 3 • Chapter VI, Exercise 4
Gödel's Incompleteness Theorem	
Georg Moser Institute of Computer Science @ UIBK Winter 2011	GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 113/1 Previous Results
Outline of the Lecture General Idea Behind Gödel's Proof	Previous Results Definition
Tarski's Theorem for Arithmetic the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations	let g be a bijection such that g(E) := Gödel number of expression E Theorem (Abstract Gödel's Theorem) suppose \mathcal{L} is correct and $P := \{g(S) \mid S \in \mathcal{P}\}$ such that $(\sim P)^*$ is
$ω$ -consistency, a basic incompleteness theorem, $ω$ -consistency lemma, $Σ_0$ - complete subsystems, $ω$ -incompleteness of PA	expressible in \mathcal{L} ; then \exists a true sentence of \mathcal{L} , not provable in \mathcal{L} Definition (PA)
Rosser Systems abstract incompleteness theorems after Rosser, general separation princi- ple, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation	$N_{12}: \qquad F[\overline{0}] \to (\forall v_1(F(v_1) \to F[v_1']) \to \forall v_1F(v_1))$

Homework

Rosser Systems
Recall $\Omega_4:$ $v_1 \leqslant \overline{n} \leftrightarrow (v_1 = \overline{0} \lor \cdots \lor v_1 = \overline{n})$ $\Omega_5:$ $v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1$
Theorem (Rosser's Theorem) every consistent extension of Ω_4, Ω_5 in which all Σ_1 -sets are enumerable must be incomplete
Corollary every consistent extension of Ω_4, Ω_5 which is Σ_0 -complete must be incomplete
Corollary every consistent extension of R is incomplete; hence PA is incomplete
GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 117/12 Abstract Incompleteness After Rosser
Definition a formula $F(v_1)$ separates a set A from a set B in system S , if • $\forall n \in A: F(\overline{n})$ is provable in S
Lemma suppose $F(v_1)$ separates A from B in S and S is consistent, then $F(v_1)$ represents some superset of A disjoint from B

Theorem if $H(v_1)$ separates R^* from P^* in S , then the sentence $H(\overline{h})$ is undecidable in S , where $h := \ulcorner H(v_1) \urcorner$ Definition (General Separation) Definition (General Separation) \square for any Σ_1 -sets A and B , the set $A \setminus B$ is separable \square for any Σ_1 -relations $R_1(x_1, \dots, x_n)$ and $R_2(x_1, \dots, x_n)$	
$[] \qquad [] \qquad [] for any \Sigma_1$ -relations $R_1(x_1, \ldots, x_n)$ and $R_2(x_1, \ldots, x_n)$	le from $B \setminus A$
a formula $F(v_1,, v_n)$ separates a relation $R_1(x_1,, x_n)$ from $R_2(x_1,, x_n)$ in S , if • $\forall k_1,, k_n \in \mathbb{N}$ such that $R_1(k_1,, k_n)$ holds: $F(\overline{k_1},, \overline{k_n})$ is provable in S • $\forall k_1,, k_n \in \mathbb{N}$ such that $R_1(k_1,, k_n)$ holds: $F(\overline{k_1},, \overline{k_n})$ is refutable in S Definition we say R_1 is separable from R_2 if some formula exists that separates R_1 $R_1(x_1,, x_n) \land \neg R_2(x_1,, x_n) \land (R_1(x_1,, x_n)) \land \neg R_1(x_1,, x_n) \land (R_2(x_1,, x_n)) \land \neg R_2(x_1,, x_n) \land (R_2(x_1,, x_n)) \land (R_2(x_1,$	(x_n) with $n > 1$, $R_1 \setminus R_2$) $R_2 \setminus R_1$) Ser system, then A
from R_2 and B are separable in S	
GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 120/122 GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem	121/122
Lemma (Separation Lemma) if all formulas in Ω_4 , Ω_5 are provable in S , then for any two relation $R_1(x_1, \dots, x_n) = R_2(x_1, \dots, x_n)$ that are enumerable in S , $R_1 \setminus R_2$ and $R_2 \setminus R_1$ are separable Proof. on the whiteboard Theorem every extension S of Ω_4 , Ω_5 which is Σ_0 -complete is a Rosser system Proof.	