Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Outline of the Lecture

General Idea Behind Gödel's Proof
abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}
Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof

ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Homework

- Chapter VI, Exercise 3
- Chapter VI, Exercise 4

Previous Results

Definition
let g be a bijection such that

$$
g(E):=\text { Gödel number of expression } E
$$

Theorem (Abstract Gödel's Theorem)
suppose \mathcal{L} is correct and $P:=\{g(S) \mid S \in \mathcal{P}\}$ such that $(\sim P)^{*}$ is expressible in \mathcal{L}; then \exists a true sentence of \mathcal{L}, not provable in \mathcal{L}

Definition (PA)

$$
N_{12}: \quad F[\overline{0}] \rightarrow\left(\forall v_{1}\left(F\left(v_{1}\right) \rightarrow F\left[v_{1}^{\prime}\right]\right) \rightarrow \forall v_{1} F\left(v_{1}\right)\right)
$$

Theorem
if PA is correct, then PA is incomplete

Recall

$$
\begin{array}{ll}
\Omega_{4}: & v_{1} \leqslant \bar{n} \leftrightarrow\left(v_{1}=\overline{0} \vee \cdots \vee v_{1}=\bar{n}\right) \\
\Omega_{5}: & v_{1} \leqslant \bar{n} \vee \bar{n} \leqslant v_{1}
\end{array}
$$

Theorem (Rosser's Theorem)
every consistent extension of Ω_{4}, Ω_{5} in which all Σ_{1}-sets are enumerable must be incomplete

Corollary
every consistent extension of Ω_{4}, Ω_{5} which is Σ_{0}-complete must be incomplete

Corollary
every consistent extension of R is incomplete; hence PA is incomplete

Definition

a formula $F\left(v_{1}\right)$ separates a set A from a set B in system \mathcal{S}, if

- $\forall n \in A: F(\bar{n})$ is provable in \mathcal{S}
- $\forall n \in B: F(\bar{n})$ is refutable in \mathcal{S}

Theorem

if some superset A of R^{*} disjoint from P^{*} is representable in \mathcal{S}, then \mathcal{S} is incomplete; more precisely if $H\left(v_{1}\right)$ represents A, then the sentence $H(\bar{h})$ is undecidable, where $h:=\left\ulcorner H\left(v_{1}\right)\right\urcorner$

Proof.
 on the whiteboard

NB: consistency is not necessary as assumption as implied by disjointness of R^{*} from P^{*}

Lemma

suppose $F\left(v_{1}\right)$ separates A from B in \mathcal{S} and \mathcal{S} is consistent, then $F\left(v_{1}\right)$ represents some superset of A disjoint from B

Proof.

- let A^{\prime} be the set represented by $F\left(v_{1}\right)$
- since $\forall n \in A$: $F(\bar{n})$ is provable in S, we have $A \subseteq A^{\prime}$
- suppose $n \in A^{\prime} \cap B$; then $F(\bar{n})$ is provable and refutable
- hence A^{\prime} and B are disjoint

Theorem
if $H\left(v_{1}\right)$ separates R^{*} from P^{*} in \mathcal{S}, then the sentence $H(\bar{h})$ is undecidable in \mathcal{S}, where $h:=\left\ulcorner H\left(v_{1}\right)\right\urcorner$

Definition (General Separation)
a formula $F\left(v_{1}, \ldots, v_{n}\right)$ separates a relation $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ from $R_{2}\left(x_{1}, \ldots, x_{n}\right)$ in \mathcal{S}, if

- $\forall k_{1}, \ldots k_{n} \in \mathbb{N}$ such that $R_{1}\left(k_{1}, \ldots, k_{n}\right)$ holds: $F\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right)$ is provable in \mathcal{S}
- $\forall k_{1}, \ldots k_{n} \in \mathbb{N}$ such that $R_{1}\left(k_{1}, \ldots, k_{n}\right)$ holds: $F\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right)$ is refutable in \mathcal{S}

Definition

we say R_{1} is separable from R_{2} if some formula exists that separates R_{1} from R_{2}

Rosser Systems

Definition (Rosser System)
a system \mathcal{S} is called Rosser if
1 for any Σ_{1}-sets A and B, the set $A \backslash B$ is separable from $B \backslash A$
2 for any Σ_{1}-relations $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $R_{2}\left(x_{1}, \ldots, x_{n}\right)$ with $n>1$, the relation

$$
R_{1}\left(x_{1}, \ldots, x_{n}\right) \wedge \neg R_{2}\left(x_{1}, \ldots, x_{n}\right) \quad\left(R_{1} \backslash R_{2}\right)
$$

is separable from

$$
R_{2}\left(x_{1}, \ldots, x_{n}\right) \wedge \neg R_{1}\left(x_{1}, \ldots, x_{n}\right) \quad\left(R_{2} \backslash R_{1}\right)
$$

Observation

suppose A and B are disjoint Σ_{1}-sets and \mathcal{S} is a Rosser system, then A and B are separable in \mathcal{S}

Lemma (Separation Lemma)
if all formulas in Ω_{4}, Ω_{5} are provable in \mathcal{S}, then for any two relation

$$
R_{1}\left(x_{1}, \ldots, x_{n}\right) \quad R_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

that are enumerable in $\mathcal{S}, R_{1} \backslash R_{2}$ and $R_{2} \backslash R_{1}$ are separable
Proof.
on the whiteboard

Theorem
every extension \mathcal{S} of Ω_{4}, Ω_{5} which is Σ_{0}-complete is a Rosser system
Proof.
if \mathcal{S} is Σ_{0}-complete, then all Σ_{1}-relations are enumerable in \mathcal{S}

