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Summary of Last Lecture

Summary of Last Lecture

Lemma (Separation Lemma)

if all formulas in Ω4, Ω5 are provable in S, then for any two relation

R1(x1, . . . , xn) R2(x1, . . . , xn)

that are enumerable in S, R1 \ R2 and R2 \ R1 are separable

Theorem

every extension S of Ω4, Ω5 which is Σ0-complete is a Rosser system

Corollary

the systems R, Q, and PA are Rosser systems
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Homework

Homework

• Chapter VI, Exercise 6.
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Outline

Outline of the Lecture

General Idea Behind Gödel’s Proof

abstract forms of Gödel’s, Tarski’s theorems, undecidable sentences of L

Tarski’s Theorem for Arithmetic

the language LE , Tarski’s theorem, the axiom system PE, arithmetisation
of the axiom system, incompleteness of PA, Σ1-relations

Gödel’s Proof

ω-consistency, Σ0-complete subsystems, ω-incompleteness of PA

Rosser Systems

general separation principle, Rosser’s undecidable sentence, Gödel and
Rosser sentences compared

The Unprovability of Consistency

definability and diagonalisation, the unprovability of consistency
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Rosser’s Undecidable Sentence

Rosser’s Undecidable Sentence

Theorem

if S is a consistent system that extends Ω4, Ω5 such that P∗ and R∗ are
enumerable in S, then S is incomplete

Proof.

on the whiteboard

Corollary (Rosser’s Theorem)

every consistent extension of Ω4, Ω5 in which all Σ1-sets are enumerable
must be incomplete

Proof.

on the whiteboard
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Gödel and Rosser Sentences Compared

Gödel and Rosser Sentences Compared

consider PA

Definition

let ∃yA(x , y) represent P∗ and let ∃yB(x , y) represent R∗

• if A(n, m) is true then we say m is a witness that En(n) is provable

• if B(n, m) is true then we say m is a witness that En(n) is refutable

• Gödel’s sentence ∀y¬A(a, y) expresses that for all y , y is not a
witness that Ea(a) is provable. Or simpler: Gödel’s sentence
expresses its own unprovability

• Rosser’s sentence ∀y(A(h, y)→ (∃z 6 y)B(h, z)) expresses that for
any potential witness of provability, there exists a potential smaller
witness of refutability
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Definability and Complete Representability

Definability and Complete Representability

Recall

F (v1, . . . , vn) represents R in S if for all (m1, . . . , mn) ∈ Nn:

F (m1, . . . , mn) is provable in S ⇐⇒ (m1, . . . , mn) ∈ R

we also say that F (v1, . . . , vn) represents the relation R(x1, . . . , xn)

Definition

F (v1, . . . , vn) defines R in S if for all (m1, . . . , mn) ∈ Nn:

1 if R(m1, . . . , mn) holds, then F (m1, . . . , mn) is provable in S
2 if R(m1, . . . , mn) is false, then F (m1, . . . , mn) is refutable in S

F (v1, . . . , vn) completely represents R in S if

1 F represents R

2 ¬F represents ∼R
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Definability and Complete Representability

Lemma

If F defines R and S is consistent then F completely represents R in S

Proof.

on the whiteboard

Lemma

1 If S is a Rosser system, then all recursive relations are definable in S
2 If S is a consistent Rosser system, then all recursive relations are

completely representable in S

Proof.
• by definition R ∈ Σ1 and ∼R ∈ Σ1 and by assumption ∃ formula

F (v1) that separates R from ∼R

• hence F defines R
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Definability and Complete Representability

Theorem

all recursive relations are definable in Robinson’s R (and also in PA)

Definition

• F (v1, . . . , vn, vn+1) weakly defines the function f (x1, . . . , xn) in S if
F defines the following relation:

f (x1, . . . , xn) = xn+1

• F (v1, . . . , vn, vn+1) strongly defines the function f (x1, . . . , xn) in S if
F weakly defines f and the following condition holds:

If f (a1, . . . , an) = b, then
∀vn+1F (a1, . . . , an, vn+1)→ vn+1 = b is provable in S

Theorem

if f (x) is strongly definable in S, then for any formula G (v1), there ∃ a
formula H(v1) such that ∀ n ∈ N, H(n)↔ G (f (n)) is provable
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Definability and Complete Representability

Definition

for any disjoint pair (A, B) of sets, a formula F (v1) exactly separates A
from B in S, if F (v1) represents A and ¬F (v1) represents B

Corollary

suppose f (x) is strongly definable in S
1 ∀ sets A representable in S, f −1(A) is representable in S
2 ∀ pairs (A, B) that is exactly separable in S, the pair

(f −1(A), f −1(B)) is exactly separable in S
3 ∀ sets A definable in S, f −1(A) is definable in S

Proof.

on the whiteboard

GM (Institute of Computer Science @ UIBK) Gödel’s Incompleteness Theorem 15/16
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Strong Definability of Recursive Functions

Lemma

if S is an extension of Ω4, Ω5, then any function f weakly definable in S,
is strongly definable in S

Proof.

on the whiteboard

Theorem

all recursive functions are strongly definable in Robinson’s R (and hence
also in PA)

Corollary

the diagonal function d(x) is strongly definable in every extension of R

Proof.

recall that any function whose graph is Σ1, is recursive
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