

Gödel's Incompleteness Theorem

Georg Moser

Winter 2011

Homework

• Chapter VI, Exercise 6.

Summary of Last Lecture

Summary of Last Lecture

Lemma (Separation Lemma) if all formulas in Ω_4 , Ω_5 are provable in S, then for any two relation

 $R_1(x_1,\ldots,x_n)$ $R_2(x_1,\ldots,x_n)$

that are enumerable in S, $R_1 \setminus R_2$ and $R_2 \setminus R_1$ are separable

Theorem

every extension S of Ω_4, Ω_5 which is Σ_0 -complete is a Rosser system

Corollary

the systems R, Q, and PA are Rosser systems

GM (Institute of Computer Science @ UIBK)

Outline of the Lecture

General Idea Behind Gödel's Proof abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\mathcal L$

Gödel's Incompleteness Theorem

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 ω -consistency, Σ_0 -complete subsystems, ω -incompleteness of PA

Rosser Systems

general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared

The Unprovability of Consistency definability and diagonalisation, the unprovability of consistency

Rosser's Undecidable Sentence	Gödel and Rosser Sentences Compared
Rosser's Undecidable Sentence Theorem if S is a consistent system that extends Ω_4 , Ω_5 such that P* and R* are enumerable in S, then S is incomplete Proof. on the whiteboard Corollary (Rosser's Theorem) every consistent extension of Ω_4 , Ω_5 in which all Σ_1 -sets are enumerable must be incomplete Proof. on the whiteboard	Gödel and Rosser Sentences Compared consider PA Definition let $\exists yA(x, y)$ represent P^* and let $\exists yB(x, y)$ represent R^* • if $A(\overline{n}, \overline{m})$ is true then we say m is a witness that $E_n(\overline{n})$ is provable • if $B(\overline{n}, \overline{m})$ is true then we say m is a witness that $E_n(\overline{n})$ is refutable • Gödel's sentence $\forall y \neg A(\overline{a}, y)$ expresses that for all y, y is not a witness that $E_a(\overline{a})$ is provable. Or simpler: Gödel's sentence expresses its own unprovability • Rosser's sentence $\forall y(A(\overline{h}, y) \rightarrow (\exists z \leq y)B(\overline{h}, z))$ expresses that for any potential witness of provability, there exists a potential smaller witness of refutability
GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 10/1	6 GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 11/16
Definability and Complete Representability	Definability and Complete Representability
Definability and Complete Representability Recall $F(v_1,, v_n)$ represents R in S if for all $(m_1,, m_n) \in \mathbb{N}^n$: $F(\overline{m}_1,, \overline{m}_n)$ is provable in $S \iff (m_1,, m_n) \in R$ we also say that $F(v_1,, v_n)$ represents the relation $R(x_1,, x_n)$	Lemma If F defines R and S is consistent then F completely represents R in S Proof. on the whiteboard
Definition $F(v_1, \ldots, v_n)$ defines R in S if for all $(m_1, \ldots, m_n) \in \mathbb{N}^n$:1 if $R(m_1, \ldots, m_n)$ holds, then $F(\overline{m}_1, \ldots, \overline{m}_n)$ is provable in S 2 if $R(m_1, \ldots, m_n)$ is false, then $F(\overline{m}_1, \ldots, \overline{m}_n)$ is refutable in S $F(v_1, \ldots, v_n)$ completely represents R in S if1 F represents R 2 $\neg F$ represents $\sim R$	 Lemma If S is a Rosser system, then all recursive relations are definable in S If S is a consistent Rosser system, then all recursive relations are completely representable in S Proof. by definition R ∈ Σ₁ and ~R ∈ Σ₁ and by assumption ∃ formula F(v₁) that separates R from ~R hence F defines R

Definability and Complete Representability	Definability and Complete Representability
Theorem all recursive relations are definable in Robinson's R (and also in PA) Definition • $F(v_1,, v_n, v_{n+1})$ weakly defines the function $f(x_1,, x_n)$ in S if F defines the following relation: $f(x_1,, x_n) = x_{n+1}$ • $F(v_1,, v_n, v_{n+1})$ strongly defines the function $f(x_1,, x_n)$ in S if F weakly defines f and the following condition holds: If $f(a_1,, a_n) = b$, then $\forall v_{n+1}F(\overline{a}_1,, \overline{a}_n, v_{n+1}) \rightarrow v_{n+1} = \overline{b}$ is provable in S Theorem if $f(x)$ is strongly definable in S, then for any formula $G(v_1)$, there \exists a formula $H(v_1)$ such that $\forall n \in \mathbb{N}$, $H(\overline{n}) \leftrightarrow G(\overline{f(n)})$ is provable	 Definition for any disjoint pair (A, B) of sets, a formula F(v₁) exactly separates A from B in S, if F(v₁) represents A and ¬F(v₁) represents B Corollary suppose f(x) is strongly definable in S ∀ sets A representable in S, f⁻¹(A) is representable in S ∀ pairs (A, B) that is exactly separable in S, the pair (f⁻¹(A), f⁻¹(B)) is exactly separable in S ∀ sets A definable in S, f⁻¹(A) is definable in S ∀ sets A definable in S, f⁻¹(A) is definable in S ∀ no f. on the whiteboard
	6 GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 15/16
Strong Definability of Recursive Functions Lemma if S is an extension of Ω_4 , Ω_5 , then any function f weakly definable in S, is strongly definable in S	
Proof. on the whiteboard	
Theorem all recursive functions are strongly definable in Robinson's R (and hence also in PA)	
Corollary the diagonal function $d(x)$ is strongly definable in every extension of R	
Proof. recall that any function whose graph is Σ_1 , is recursive	