

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Fact

Fact

Gödel's argument is applicable to \mathcal{L} if at least the following holds:

1 \exists countable set of expressions \mathcal{E}

Fact

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences

Fact

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- **3** $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences

Fact

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- **3** $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
- **4** $\exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences

Fact

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- **3** $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
- **4** $\exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences
- 5 ∃ H ⊆ E, H are the predicates of L, that is H ∈ H names a set of natural numbers

Fact

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- **3** $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
- **4** $\exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences
- **5** $\exists \mathcal{H} \subseteq \mathcal{E}, \mathcal{H} \text{ are the predicates of } \mathcal{L}, \text{ that is } H \in \mathcal{H} \text{ names a set of natural numbers}$
- **6** \exists function Φ that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H

Fact

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- **3** $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
- **4** $\exists \mathcal{R} \subseteq S$, the refutable sentences
- 5 ∃ H ⊆ E, H are the predicates of L, that is H ∈ H names a set of natural numbers
- **6** \exists function Φ that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H
- **7** $\exists T \subseteq S$, the true sentences

Definition

- **1** (clearly) a predicate *H* is true for $n \in \mathbb{N}$, if H(n) holds
- 2 *H* expresses the set $\{n \mid H(n)\}$, that is *A* is expressed by *H* if

 $H(n) \in \mathcal{T} \iff n \in A$

Definition

- **1** (clearly) a predicate *H* is true for $n \in \mathbb{N}$, if H(n) holds
- **2** H expresses the set $\{n \mid H(n)\}$, that is A is expressed by H if

$$H(n) \in \mathcal{T} \iff n \in A$$

Definition

a set A is expressible (nameable) in \mathcal{L} if A is expressed by some predicate

Definition

- **1** (clearly) a predicate *H* is true for $n \in \mathbb{N}$, if H(n) holds
- 2 *H* expresses the set $\{n \mid H(n)\}$, that is *A* is expressed by *H* if

$$H(n) \in \mathcal{T} \iff n \in A$$

Definition

a set A is expressible (nameable) in \mathcal{L} if A is expressed by some predicate

Fact

hence not every set is expressible

Definition

- **1** (clearly) a predicate *H* is true for $n \in \mathbb{N}$, if H(n) holds
- **2** H expresses the set $\{n \mid H(n)\}$, that is A is expressed by H if

$$H(n) \in \mathcal{T} \iff n \in A$$

Definition

a set A is expressible (nameable) in \mathcal{L} if A is expressed by some predicate

Fact

- there are only countable many predicates of *L*; however there are non-countable many sets over ℕ
- hence not every set is expressible

Definition \mathcal{L} is correct if $\mathcal{P} \subset \mathcal{T}$ and $\mathcal{R} \cap \mathcal{T} = \emptyset$

Definition $\mathcal{L} \text{ is correct if } \mathcal{P} \subseteq \mathcal{T} \text{ and } \mathcal{R} \cap \mathcal{T} = \emptyset$

Definition

1 let g be a bijection such that

g(E) := Gödel number of expression E

Definition \mathcal{L} is correct if $\mathcal{P} \subseteq \mathcal{T}$ and $\mathcal{R} \cap \mathcal{T} = \emptyset$

Definition

1 let g be a bijection such that

g(E) := Gödel number of expression E

2 E_n is defined such that $g(E_n) = n$

Definition \mathcal{L} is correct if $\mathcal{P} \subseteq \mathcal{T}$ and $\mathcal{R} \cap \mathcal{T} = \emptyset$

Definition

1 let g be a bijection such that

g(E) := Gödel number of expression E

- **2** E_n is defined such that $g(E_n) = n$
- 3 the diagonalisation of E_n is $E_n(n)$

Definition $\mathcal{L} \text{ is correct if } \mathcal{P} \subseteq \mathcal{T} \text{ and } \mathcal{R} \cap \mathcal{T} = \emptyset$

Definition

1 let g be a bijection such that

g(E) := Gödel number of expression E

- **2** E_n is defined such that $g(E_n) = n$
- **3** the diagonalisation of E_n is $E_n(n)$
- **4** define the diagonal function *d* as follows:

$$d(n) := g(E_n(n))$$

if E_n is a predicate (that is $E_n \in \mathcal{H}$), then $E_n(n)$ is a sentence (by definition)

if E_n is a predicate (that is $E_n \in \mathcal{H}$), then $E_n(n)$ is a sentence (by definition)

Definition

let A be a set over \mathbb{N} (a number set), then

$$A^* := \{n \in \mathbb{N} \mid d(n) \in A\}$$

if E_n is a predicate (that is $E_n \in \mathcal{H}$), then $E_n(n)$ is a sentence (by definition)

Definition

let A be a set over \mathbb{N} (a number set), then

$$A^* := \{n \in \mathbb{N} \mid d(n) \in A\}$$

Theorem (Gödel's Theorem)

suppose \mathcal{L} is correct and $P := \{g(S) \mid S \in \mathcal{P}\}$ such that $(\sim P)^*$ is expressible in \mathcal{L} ; then \exists a true sentence of \mathcal{L} , not provable in \mathcal{L}

if E_n is a predicate (that is $E_n \in \mathcal{H}$), then $E_n(n)$ is a sentence (by definition)

Definition

let A be a set over \mathbb{N} (a number set), then

$$A^* := \{n \in \mathbb{N} \mid d(n) \in A\}$$

Theorem (Gödel's Theorem)

suppose \mathcal{L} is correct and $P := \{g(S) \mid S \in \mathcal{P}\}$ such that $(\sim P)^*$ is expressible in \mathcal{L} ; then \exists a true sentence of \mathcal{L} , not provable in \mathcal{L}

Proof.

on black board

- $(\sim P)^*$ is expressible boils down to
- G1 \forall sets A expressible in \mathcal{L} , A^* is expressible in \mathcal{L}
- G2 \forall sets A expressible in \mathcal{L} , $\sim A$ is expressible in \mathcal{L}
- G3 P is expressible in \mathcal{L}

- $(\sim P)^*$ is expressible boils down to
- G1 \forall sets A expressible in \mathcal{L} , A^* is expressible in \mathcal{L}
- G2 \forall sets A expressible in \mathcal{L} , $\sim A$ is expressible in \mathcal{L}
- G3 P is expressible in \mathcal{L}

it will be simply to verify G1, it will be trivial to verify G2, but the hard part will be to verify G3

Definition

 E_n is a Gödel sentence for a number set A, if

- **1** either $E_n \in \mathcal{T}$ and $n \in A$, or
- **2** $E_n \notin T$ and $n \notin A$

Definition

 E_n is a Gödel sentence for a number set A, if

- **1** either $E_n \in \mathcal{T}$ and $n \in A$, or
- **2** $E_n \notin T$ and $n \notin A$

Lemma (Diagonal Lemma)

1 \forall sets A, if A^{*} is expressible in \mathcal{L} , then \exists Gödel sentence for A

Definition

 E_n is a Gödel sentence for a number set A, if

- **1** either $E_n \in \mathcal{T}$ and $n \in A$, or
- **2** $E_n \notin T$ and $n \notin A$

Lemma (Diagonal Lemma)

1 \forall sets A, if A^{*} is expressible in \mathcal{L} , then \exists Gödel sentence for A

Proof. on black board

Definition

 E_n is a Gödel sentence for a number set A, if

- **1** either $E_n \in \mathcal{T}$ and $n \in A$, or
- **2** $E_n \notin T$ and $n \notin A$

Lemma (Diagonal Lemma)

- **1** \forall sets A, if A^{*} is expressible in \mathcal{L} , then \exists Gödel sentence for A
- 2 if L satisfies G1, then ∀ sets A expressible in L, then ∃ Gödel sentence for A

Proof.

on black board

Theorem (Tarski's Theorem) let $T := \{g(S) \mid S \in T\}$

let $T := \{g(S) \mid S \in \mathcal{T}\}$

- 1 $(\sim T)^*$ is not nameable in \mathcal{L}
- 2 if G1 holds, then \sim T ist not nameable in $\mathcal L$
- 3 if G1 & G2 hold, then T is not nameable in \mathcal{L}

- let $T := \{g(S) \mid S \in \mathcal{T}\}$
 - 1 $(\sim T)^*$ is not nameable in $\mathcal L$
 - 2 if G1 holds, then \sim T ist not nameable in $\mathcal L$
 - **3** if G1 & G2 hold, then T is not nameable in \mathcal{L}

Proof.

assume \exists Gödel sentence for $\sim T$; then \exists sentence E_n such that E_n is true iff $n \notin T$; this is absurd

- let $T := \{g(S) \mid S \in \mathcal{T}\}$
 - 1 $(\sim T)^*$ is not nameable in $\mathcal L$
 - 2 if G1 holds, then \sim T ist not nameable in $\mathcal L$
 - **3** if G1 & G2 hold, then T is not nameable in \mathcal{L}

Proof.

assume \exists Gödel sentence for $\sim T$; then \exists sentence E_n such that E_n is true iff $n \notin T$; this is absurd

I assume $(\sim T)^*$ is nameable, then ∃ Gödel sentence for $(\sim T)^*$; Contradiction

let $T := \{g(S) \mid S \in \mathcal{T}\}$

- 1 $(\sim T)^*$ is not nameable in $\mathcal L$
- 2 if G1 holds, then \sim T ist not nameable in $\mathcal L$
- **3** if G1 & G2 hold, then T is not nameable in \mathcal{L}

Proof.

assume \exists Gödel sentence for $\sim T$; then \exists sentence E_n such that E_n is true iff $n \notin T$; this is absurd

- I assume (~ T)* is nameable, then ∃ Gödel sentence for (~ T)*; Contradiction
- **2** assume $\sim T$ is nameable, by G1 $(\sim T)^*$ is nameable; Contradiction

- let $T := \{g(S) \mid S \in \mathcal{T}\}$
 - 1 $(\sim T)^*$ is not nameable in $\mathcal L$
 - 2 if G1 holds, then \sim T ist not nameable in $\mathcal L$
 - **3** if G1 & G2 hold, then T is not nameable in \mathcal{L}

Proof.

assume \exists Gödel sentence for $\sim T$; then \exists sentence E_n such that E_n is true iff $n \notin T$; this is absurd

- I assume (~ T)* is nameable, then ∃ Gödel sentence for (~ T)*; Contradiction
- **2** assume $\sim T$ is nameable, by G1 $(\sim T)^*$ is nameable; Contradiction
- **3** assume T is nameable, by $G2 \sim T$ is nameable; Contradiction

Definition

1 \mathcal{L} is consistent if $\neg \exists$ sentence that is provable and refutable

Definition

- **1** \mathcal{L} is consistent if $\neg \exists$ sentence that is provable and refutable
- **2** a sentence S is decidable in \mathcal{L} if it either provable or refutable; S is called undecidable otherwise

Definition

- **1** \mathcal{L} is consistent if $\neg \exists$ sentence that is provable and refutable
- **2** a sentence S is decidable in \mathcal{L} if it either provable or refutable; S is called undecidable otherwise
- 3 L is complete if ∀ sentences S, S is decidable; otherwise L is incomplete

Definition

- **1** \mathcal{L} is consistent if $\neg \exists$ sentence that is provable and refutable
- **2** a sentence S is decidable in \mathcal{L} if it either provable or refutable; S is called undecidable otherwise
- 3 L is complete if ∀ sentences S, S is decidable; otherwise L is incomplete

Theorem

if \mathcal{L} is correct and if $(\sim P)^*$ is expressible in \mathcal{L} , then \mathcal{L} is incomplete

Definition

- **1** \mathcal{L} is consistent if $\neg \exists$ sentence that is provable and refutable
- **2** a sentence S is decidable in \mathcal{L} if it either provable or refutable; S is called undecidable otherwise
- 3 L is complete if ∀ sentences S, S is decidable; otherwise L is incomplete

Theorem

if \mathcal{L} is correct and if $(\sim P)^*$ is expressible in \mathcal{L} , then \mathcal{L} is incomplete

Proof. by Gödel's Theorem

Theorem

suppose \mathcal{L} is correct and let $R := \{g(S) \mid S \in S \cap \mathcal{R}\}$

- **1** suppose R^* is expressible in \mathcal{L} ; then \mathcal{L} is incomplete
- 2 moreover if K expresses R*, then its diagonalisation K(k) is undecidable

Theorem

suppose \mathcal{L} is correct and let $R := \{g(S) \mid S \in S \cap \mathcal{R}\}$

- **1** suppose R^* is expressible in \mathcal{L} ; then \mathcal{L} is incomplete
- 2 moreover if K expresses R*, then its diagonalisation K(k) is undecidable

Proof.

```
1 if K expresses R^*, then
```

K(k) is true $\iff d(k) \in R$

Theorem

suppose \mathcal{L} is correct and let $R := \{g(S) \mid S \in S \cap \mathcal{R}\}$

- **1** suppose R^* is expressible in \mathcal{L} ; then \mathcal{L} is incomplete
- 2 moreover if K expresses R*, then its diagonalisation K(k) is undecidable

Proof.

```
1 if K expresses R^*, then
```

```
K(k) is true \iff d(k) \in R
```

2 d(k) is the Gödel number of K(k)

Theorem

suppose \mathcal{L} is correct and let $R := \{g(S) \mid S \in S \cap \mathcal{R}\}$

- **1** suppose R^* is expressible in \mathcal{L} ; then \mathcal{L} is incomplete
- 2 moreover if K expresses R*, then its diagonalisation K(k) is undecidable

Proof.

1 if
$$K$$
 expresses R^* , then

$$K(k)$$
 is true $\iff d(k) \in R$

- 2 d(k) is the Gödel number of K(k)
- 3 hence K(k) is true iff it is refutable

Theorem

suppose \mathcal{L} is correct and let $R := \{g(S) \mid S \in S \cap \mathcal{R}\}$

- **1** suppose R^* is expressible in \mathcal{L} ; then \mathcal{L} is incomplete
- 2 moreover if K expresses R*, then its diagonalisation K(k) is undecidable

Proof.

1 if
$$K$$
 expresses R^* , then

$$K(k)$$
 is true $\iff d(k) \in R$

- 2 d(k) is the Gödel number of K(k)
- 3 hence K(k) is true iff it is refutable
- 4 thus K(k) is undecidable