

# Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Abstract Forms of Gödel's and Tarkis's Theorems

# Abstract Forms of Gödel's and Tarkis's Theorems

#### Fact

Gödel's argument is applicable to  $\mathcal L$  if at least the following holds:

- $\blacksquare$  countable set of expressions  $\mathcal{E}$
- $\supseteq \exists \mathcal{S} \subseteq \mathcal{E}, \mathcal{S} \text{ are the sentences}$
- $\exists \mathcal{P} \subseteq \mathcal{S}$ , the provable sentences
- $\exists \mathcal{R} \subseteq \mathcal{S}$ , the refutable sentences
- **5**  $\exists \mathcal{H} \subseteq \mathcal{E}$ ,  $\mathcal{H}$  are the predicates of  $\mathcal{L}$ , that is  $\mathcal{H} \in \mathcal{H}$  names a set of natural numbers
- **6** ∃ function  $\Phi$  that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H
- $7 \exists T \subseteq S, \text{ the true sentences}$

Abstract Forms of Gödel's and Tarkis's Theorems

### Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of  ${\cal L}$ 

#### Tarski's Theorem for Arithmetic

the language  $\mathcal{L}_E$ , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA,  $\Sigma_1$ -relations

#### Gödel's Proof

 $\omega$ -consistency, a basic incompleteness theorem,  $\omega$ -consistency lemma,  $\Sigma_0$ -complete subsystems,  $\omega$ -incompleteness of PA

#### Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

GM (Institute of Computer Science @ UIBK)

Gödel's Incompleteness Theorem

18/

bstract Forms of Gödel's and Tarkis's Theorems

# Expressibility in $\mathcal{L}$

#### Definition

- **1** (clearly) a predicate H is true for  $n \in \mathbb{N}$ , if H(n) holds
- 2 H expresses the set  $\{n \mid H(n)\}$ , that is A is expressed by H if

$$H(n) \in \mathcal{T} \iff n \in A$$

#### Definition

a set A is expressible (nameable) in  $\mathcal L$  if A is expressed by some predicate

#### Fact

- there are only countable many predicates of  $\mathcal{L}$ ; however there are non-countable many sets over  $\mathbb{N}$
- hence not every set is expressible

# Gödel Numbering and Diagonalisation

#### Definition

 $\mathcal{L}$  is correct if  $\mathcal{P} \subseteq \mathcal{T}$  and  $\mathcal{R} \cap \mathcal{T} = \emptyset$ 

#### Definition

1 let g be a bijection such that

g(E) :=Gödel number of expression E

- $E_n$  is defined such that  $g(E_n) = n$
- 3 the diagonalisation of  $E_n$  is  $E_n(n)$
- 4 define the diagonal function d as follows:

$$d(n) := g(E_n(n))$$

#### Fact

if  $E_n$  is a predicate (that is  $E_n \in \mathcal{H}$ ), then  $E_n(n)$  is a sentence (by definition)

#### Definition

let A be a set over  $\mathbb{N}$  (a number set), then

$$A^* := \{n \in \mathbb{N} \mid d(n) \in A\}$$

# Theorem (Gödel's Theorem)

suppose  $\mathcal{L}$  is correct and  $P := \{g(S) \mid S \in \mathcal{P}\}$  such that  $(\sim P)^*$  is expressible in  $\mathcal{L}$ ; then  $\exists$  a true sentence of  $\mathcal{L}$ , not provable in  $\mathcal{L}$ 

#### Proof.

on black board

GM (Institute of Computer Science @ UIBK)

Gödel's Incompleteness Theorem

21/27 GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem

Abstract Forms of Gödel's and Tarkis's Theorems

#### Fact

 $(\sim P)^*$  is expressible boils down to

G1  $\forall$  sets A expressible in  $\mathcal{L}$ ,  $A^*$  is expressible in  $\mathcal{L}$ 

G2  $\forall$  sets A expressible in  $\mathcal{L}$ ,  $\sim A$  is expressible in  $\mathcal{L}$ 

G3 P is expressible in  $\mathcal{L}$ 

it will be simply to verify G1, it will be trivial to verify G2, but the hard part will be to verify G3

# Gödel Sentences

#### Definition

 $E_n$  is a Gödel sentence for a number set A, if

- **1** either  $E_n \in \mathcal{T}$  and  $n \in A$ , or
- 2  $E_n \notin \mathcal{T}$  and  $n \notin A$

### Lemma (Diagonal Lemma)

- **1**  $\forall$  sets A, if A\* is expressible in L, then  $\exists$  Gödel sentence for A
- **2** if  $\mathcal{L}$  satisfies G1, then  $\forall$  sets A expressible in  $\mathcal{L}$ , then  $\exists$  Gödel sentence for A

## Proof.

on black board

#### Undecidable Sentences of .

# Theorem (Tarski's Theorem)

 $let \ T := \{g(S) \mid S \in \mathcal{T}\}$ 

- **1**  $(\sim T)^*$  is not nameable in  $\mathcal L$
- **2** if G1 holds, then  $\sim$  T ist not nameable in  $\mathcal L$
- $oxed{3}$  if G1 & G2 hold, then T is not nameable in  $\mathcal L$

#### Proof.

assume  $\exists$  Gödel sentence for  $\sim T$ ; then  $\exists$  sentence  $E_n$  such that  $E_n$  is true iff  $n \notin T$ ; this is absurd

- **1** assume  $(\sim T)^*$  is nameable, then  $\exists$  Gödel sentence for  $(\sim T)^*$ ; Contradiction
- 2 assume  $\sim T$  is nameable, by G1  $(\sim T)^*$  is nameable; Contradiction
- 3 assume T is nameable, by G2  $\sim$  T is nameable; Contradiction

Undecidable Sentences

#### Definition

- **1**  $\mathcal{L}$  is consistent if  $\neg \exists$  sentence that is provable and refutable
- 2 a sentence S is decidable in  $\mathcal{L}$  if it either provable or refutable; S is called undecidable otherwise
- ${\bf 3}$   ${\cal L}$  is complete if  $\forall$  sentences  ${\cal S}$ ,  ${\cal S}$  is decidable; otherwise  ${\cal L}$  is incomplete

#### **Theorem**

if  $\mathcal{L}$  is correct and if  $(\sim P)^*$  is expressible in  $\mathcal{L}$ , then  $\mathcal{L}$  is incomplete

#### Proof.

by Gödel's Theorem

GM (Institute of Computer Science @ UIBK Undecidable Sentences of  $\mathcal L$ 

Gödel's Incompleteness Theorem

5/27 GM (Institute of Computer Science @ UIBK)

Gödel's Incompleteness Theorem

26/2

# A Dual of Incompleteness

#### Theorem

suppose  $\mathcal{L}$  is correct and let  $R := \{g(S) \mid S \in \mathcal{S} \cap \mathcal{R}\}$ 

- **1** suppose  $R^*$  is expressible in  $\mathcal{L}$ ; then  $\mathcal{L}$  is incomplete
- 2 moreover if K expresses  $R^*$ , then its diagonalisation K(k) is undecidable

#### Proof.

 $\blacksquare$  if K expresses  $R^*$ , then

$$K(k)$$
 is true  $\iff d(k) \in R$ 

- $\blacksquare$  hence K(k) is true iff it is refutable
- 4 thus K(k) is undecidable

GM (Institute of Computer Science @ UIBK)