

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Homework

- Suppose $\ensuremath{\mathcal{L}}$ is a correct system such that the following two conditions hold.
 - **1** The set P^* is expressible in \mathcal{L} .
 - For any predicate H, there is a predicate H' such that for every n, the sentence H'(n) is provable in L iff H(n) is refutable in L.

Show that \mathcal{L} is incomplete.

- We say that a predicate *H* represents a set *A* in *L* if for every number *n*, the sentence *H*(*n*) is provable in *L* iff *n* ∈ *A*. Suppose *L* is consistent. Show that if the set *R** is representable in *L*, then *L* is incomplete.
- Let us say that a predicate *H* contrarepresents of a set *A* in *L* if for every number *n*, the sentence *H*(*n*) is refutable in *L* iff *n* ∈ *A*. Show that if the *P** is contrarepresentable in *L* and *L* is consistent, then *L* is incomplete.

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

The Language \mathcal{L}_E

First Step

we study number theory based on addition, multiplication, and exponentiation

The Language \mathcal{L}_E

First Step

we study number theory based on addition, multiplication, and exponentiation

Definition

the language \mathcal{L}_E contains the following 13 symbols:

0
$$'$$
 () f , v \neg \rightarrow \forall = \leqslant $\#$

- 2 ' represents the successor function
- 3 f, f, f, represents +, \cdot , exp

4
$$\neg$$
, \rightarrow , \forall , = are interpreted as usual

- $5 \leq$ means "less than or equal"
- 6 $(v_{\prime}), (v_{\prime\prime\prime}), \ldots$ represents variables v_1, v_2, \ldots

terms are defined inductively :

- **1** variables (v'...') and numerals 0'...' are terms
- 2 if s, t are terms, so are

$$\underbrace{\frac{f_{\prime}(s \cdot t)}{(s + t)}}_{(s + t)} \qquad \underbrace{\frac{f_{\prime\prime}(s \cdot t)}{(s \cdot t)}}_{(s \cdot t)} \qquad \underbrace{\frac{f_{\prime\prime\prime}(s \cdot t)}{(s \exp t)}}_{(s \exp t)} \qquad s$$

terms without variables are called closed

terms are defined inductively :

- **1** variables $(v_{\prime...\prime})$ and numerals 0'...' are terms
- 2 if s, t are terms, so are

$$\underbrace{\frac{f_{\prime}(s \cdot t)}{(s+t)}}_{(s+t)} \qquad \underbrace{\frac{f_{\prime\prime}(s \cdot t)}{(s \cdot t)}}_{(s \cdot t)} \qquad \underbrace{\frac{f_{\prime\prime\prime}(s \cdot t)}{(s \exp t)}}_{s \exp t} \qquad s$$

terms without variables are called closed

Definition

s = t or $s \leq t$ are atoms; formulas are defined inductively:

- 1 atoms are formulas
- **2** if A, B are formulas and v_i a variable, then

 $\neg A \qquad A \rightarrow B \qquad \forall v_i A$

are formulas

- **1** free and bound variables are defined as usual
- **2** sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

- **1** free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

- **1** free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

- **1** free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

let v_i be a variable and F a formula

1 $F(v_i)$ denotes a formula, where v_i is the only free variable

- **1** free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

- **1** $F(v_i)$ denotes a formula, where v_i is the only free variable
- **2** $F(\overline{n})$ denotes $F(v_i)\{v_i \mapsto \overline{n}\}$

- **1** free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

- **I** $F(v_i)$ denotes a formula, where v_i is the only free variable
- **2** $F(\overline{n})$ denotes $F(v_i)\{v_i \mapsto \overline{n}\}$
- **3** for *n* free variables we write $F(v_{i_1}, \ldots, v_{i_n})$ and $F(\overline{m}_1, \ldots, \overline{m}_n)$

- 1 free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

- **I** $F(v_i)$ denotes a formula, where v_i is the only free variable
- **2** $F(\overline{n})$ denotes $F(v_i)\{v_i \mapsto \overline{n}\}$
- **3** for *n* free variables we write $F(v_{i_1}, \ldots, v_{i_n})$ and $F(\overline{m}_1, \ldots, \overline{m}_n)$
- 4 $F(\overline{m}_1,\ldots,\overline{m}_n)$ is instance of $F(v_{i_1},\ldots,v_{i_n})$

- 1 free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

- **1** $F(v_i)$ denotes a formula, where v_i is the only free variable
- **2** $F(\overline{n})$ denotes $F(v_i)\{v_i \mapsto \overline{n}\}$
- **3** for *n* free variables we write $F(v_{i_1}, \ldots, v_{i_n})$ and $F(\overline{m}_1, \ldots, \overline{m}_n)$
- 4 $F(\overline{m}_1,\ldots,\overline{m}_n)$ is instance of $F(v_{i_1},\ldots,v_{i_n})$
- **5** $F(v_{i_1}, ..., v_{i_n})$ is regular if $i_1 = 1, ..., i_n = n$

- **1** free and bound variables are defined as usual
- 2 sentences or closed formulas of \mathcal{L}_E are defined as usual
- 3 an open formulas is a not-closed formula

we write \overline{n} for the numeral $0' \dots t'$ designating n

Definition

- **1** $F(v_i)$ denotes a formula, where v_i is the only free variable
- **2** $F(\overline{n})$ denotes $F(v_i)\{v_i \mapsto \overline{n}\}$
- **3** for *n* free variables we write $F(v_{i_1}, \ldots, v_{i_n})$ and $F(\overline{m}_1, \ldots, \overline{m}_n)$
- 4 $F(\overline{m}_1, \ldots, \overline{m}_n)$ is instance of $F(v_{i_1}, \ldots, v_{i_n})$
- **5** $F(v_{i_1}, ..., v_{i_n})$ is regular if $i_1 = 1, ..., i_n = n$
- **6** a regular formula can be written as $F(v_1, \ldots, v_n)$

the degree of a formula is defined as follows:

$$\deg(F) := \begin{cases} 0 & F \text{ is an atom} \\ \deg(A) + 1 & (F = \neg A) \lor (F = \forall v_i A) \\ \deg(A) + \deg(B) + 1 & F = (A \to B) \end{cases}$$

the degree of a formula is defined as follows:

$$\deg(F) := \begin{cases} 0 & F \text{ is an atom} \\ \deg(A) + 1 & (F = \neg A) \lor (F = \forall v_i A) \\ \deg(A) + \deg(B) + 1 & F = (A \to B) \end{cases}$$

Definition

we use the following symbols as abbreviations

$$(A \lor B) := \dots \qquad (A \land B) := \dots$$
$$(A \leftrightarrow B) := \dots \qquad \exists v_i A := \dots$$
$$s \neq t := \dots \qquad s < t := \dots$$
$$s^t := \qquad (\forall v_i \leq t)F :=$$
$$(\exists v_i \leq t)F :=$$

the degree of a formula is defined as follows:

$$\deg(F) := \begin{cases} 0 & F \text{ is an atom} \\ \deg(A) + 1 & (F = \neg A) \lor (F = \forall v_i A) \\ \deg(A) + \deg(B) + 1 & F = (A \to B) \end{cases}$$

Definition

we use the following symbols as abbreviations

$$(A \lor B) := \dots \qquad (A \land B) := \dots (A \leftrightarrow B) := \dots \qquad \exists v_i A := \dots s \neq t := \dots \qquad s < t := \dots s^t := s \exp t \qquad (\forall v_i \leq t)F := \forall v_i (v_i \leq t \to F) (\exists v_i \leq t)F := \exists v_i (v_i \leq t \land F)$$

The Notion of Truth in \mathcal{L}_E

Definition

let ${\cal N}$ denote the standard model of number theory; the value of a closed term is defined as follows:

$$t^{\mathcal{N}} := \begin{cases} n & t = \overline{n} \\ c_1^{\mathcal{N}} + c_2^{\mathcal{N}} & t = (c_1 + c_2) \\ c_1^{\mathcal{N}} \cdot c_2^{\mathcal{N}} & t = (c_1 \cdot c_2) \\ (c_1^{\mathcal{N}})^{c_2^{\mathcal{N}}} & t = (c_1 \exp c_2) \\ c^{\mathcal{N}} + 1 & t = c' \end{cases}$$

The Notion of Truth in \mathcal{L}_E

Definition

let ${\cal N}$ denote the standard model of number theory; the value of a closed term is defined as follows:

$$t^{\mathcal{N}} := \begin{cases} n & t = \overline{n} \\ c_1^{\mathcal{N}} + c_2^{\mathcal{N}} & t = (c_1 + c_2) \\ c_1^{\mathcal{N}} \cdot c_2^{\mathcal{N}} & t = (c_1 \cdot c_2) \\ (c_1^{\mathcal{N}})^{c_2^{\mathcal{N}}} & t = (c_1 \exp c_2) \\ c^{\mathcal{N}} + 1 & t = c' \end{cases}$$

Example

consider the closed term $c:=((0'''+0')\cdot(0''\;\exp\;0'''))'$ Then $c^{\mathcal{N}}=(4\cdot2^3)+1=33$

Definition

Definition

$$\mathcal{N} \models c_1 = c_2 \iff \text{if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}}$$

Definition

$$\mathcal{N} \models c_1 = c_2 \iff \text{if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}}$$
$$\mathcal{N} \models c_1 \leqslant c_2 \iff \text{if } c_1^{\mathcal{N}} \leqslant c_2^{\mathcal{N}}$$

Definition

$$\mathcal{N} \models c_1 = c_2 \quad \Longleftrightarrow \quad \text{if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}}$$
$$\mathcal{N} \models c_1 \leqslant c_2 \quad \Longleftrightarrow \quad \text{if } c_1^{\mathcal{N}} \leqslant c_2^{\mathcal{N}}$$
$$\mathcal{N} \models \neg A \qquad \Longleftrightarrow \quad \text{if } \mathcal{N} \not\models A$$

Definition

$$\mathcal{N} \models c_1 = c_2 \quad \iff \text{ if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}}$$
$$\mathcal{N} \models c_1 \leqslant c_2 \quad \iff \text{ if } c_1^{\mathcal{N}} \leqslant c_2^{\mathcal{N}}$$
$$\mathcal{N} \models \neg A \qquad \iff \text{ if } \mathcal{N} \not\models A$$
$$\mathcal{N} \models A \rightarrow B \quad \iff \text{ if } \mathcal{N} \models A, \text{ then } \mathcal{N} \models B$$

Definition

$$\begin{split} \mathcal{N} &\models c_1 = c_2 &\iff \text{if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}} \\ \mathcal{N} &\models c_1 \leqslant c_2 &\iff \text{if } c_1^{\mathcal{N}} \leqslant c_2^{\mathcal{N}} \\ \mathcal{N} &\models \neg A &\iff \text{if } \mathcal{N} \not\models A \\ \mathcal{N} &\models A \to B &\iff \text{if } \mathcal{N} \models A, \text{ then } \mathcal{N} \models B \\ \mathcal{N} &\models \forall v_i A &\iff \text{if } \mathcal{N} \models A(\overline{n}) \text{ holds for all } n \in \mathbb{N} \end{split}$$

Definition

let F be a sentence, $\mathcal{N} \models F$ is defined as:

$$\begin{split} \mathcal{N} &\models c_1 = c_2 &\iff \text{if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}} \\ \mathcal{N} &\models c_1 \leqslant c_2 &\iff \text{if } c_1^{\mathcal{N}} \leqslant c_2^{\mathcal{N}} \\ \mathcal{N} &\models \neg A &\iff \text{if } \mathcal{N} \not\models A \\ \mathcal{N} &\models A \rightarrow B &\iff \text{if } \mathcal{N} \models A, \text{ then } \mathcal{N} \models B \\ \mathcal{N} &\models \forall v_i A &\iff \text{if } \mathcal{N} \models A(\overline{n}) \text{ holds for all } n \in \mathbb{N} \end{split}$$

if $\mathcal{N} \models F$, then F is true

Definition

let *F* be a sentence, $\mathcal{N} \models F$ is defined as:

$$\begin{split} \mathcal{N} &\models c_1 = c_2 &\iff \text{ if } c_1^{\mathcal{N}} = c_2^{\mathcal{N}} \\ \mathcal{N} &\models c_1 \leqslant c_2 &\iff \text{ if } c_1^{\mathcal{N}} \leqslant c_2^{\mathcal{N}} \\ \mathcal{N} &\models \neg A &\iff \text{ if } \mathcal{N} \not\models A \\ \mathcal{N} &\models A \rightarrow B &\iff \text{ if } \mathcal{N} \models A, \text{ then } \mathcal{N} \models B \\ \mathcal{N} &\models \forall v_i A &\iff \text{ if } \mathcal{N} \models A(\overline{n}) \text{ holds for all } n \in \mathbb{N} \end{split}$$

if $\mathcal{N} \models F$, then F is true

Definition

an open formula $F(v_{i_1}, \ldots, v_{i_n})$ is said to be correct if the sentence $F(\overline{m}_1, \ldots, \overline{m}_n)$ is true for all numbers m_1, \ldots, m_n

Definition

consider a formula $F(v_1)$ and let $v_i \neq v_1$ be a variable; we define $F(v_i)$ as follows:

Definition

consider a formula $F(v_1)$ and let $v_i \neq v_1$ be a variable; we define $F(v_i)$ as follows:

1 assume v_i is free for $F(v_1)$, then $F(v_i) := F(v_1)\{v_1 \mapsto v_i\}$

Definition

consider a formula $F(v_1)$ and let $v_i \neq v_1$ be a variable; we define $F(v_i)$ as follows:

- **1** assume v_i is free for $F(v_1)$, then $F(v_i) := F(v_1)\{v_1 \mapsto v_i\}$
- **2** assume v_i is not free for $F(v_1)$
 - let v_j be variable that is free for $F(v_1)$ (such that j is minimal)
 - define $F'(v_1) := F\{v_i \mapsto v_j\}$
 - set $F(v_i) := F'(v_i)$,

Definition

consider a formula $F(v_1)$ and let $v_i \neq v_1$ be a variable; we define $F(v_i)$ as follows:

- **1** assume v_i is free for $F(v_1)$, then $F(v_i) := F(v_1)\{v_1 \mapsto v_i\}$
- **2** assume v_i is not free for $F(v_1)$
 - let v_j be variable that is free for $F(v_1)$ (such that j is minimal)

• define
$$F'(v_1) := F\{v_i \mapsto v_j\}$$

• set $F(v_i) := F'(v_i)$, that is, we define $F(v_i) := F'(v_1)\{v_1 \mapsto v_i\}$

Definition

consider a formula $F(v_1)$ and let $v_i \neq v_1$ be a variable; we define $F(v_i)$ as follows:

- **1** assume v_i is free for $F(v_1)$, then $F(v_i) := F(v_1)\{v_1 \mapsto v_i\}$
- **2** assume v_i is not free for $F(v_1)$
 - let v_j be variable that is free for $F(v_1)$ (such that j is minimal)

• define
$$F'(v_1) := F\{v_i \mapsto v_j\}$$

• set $F(v_i) := F'(v_i)$, that is, we define $F(v_i) := F'(v_1)\{v_1 \mapsto v_i\}$

Example

let $F(v_1)$ be $\exists v_2(v_2 \neq v_1)$, then what is $F(v_2)$?

$$\exists v_2(v_2 \neq v_2) \qquad \exists v_3(v_3 \neq v_2)$$

Definition

consider a formula $F(v_1)$ and let $v_i \neq v_1$ be a variable; we define $F(v_i)$ as follows:

- **1** assume v_i is free for $F(v_1)$, then $F(v_i) := F(v_1)\{v_1 \mapsto v_i\}$
- **2** assume v_i is not free for $F(v_1)$
 - let v_j be variable that is free for $F(v_1)$ (such that j is minimal)

• define
$$F'(v_1) := F\{v_i \mapsto v_j\}$$

• set $F(v_i) := F'(v_i)$, that is, we define $F(v_i) := F'(v_1)\{v_1 \mapsto v_i\}$

Example

let $F(v_1)$ be $\exists v_2(v_2 \neq v_1)$, then what is $F(v_2)$?

 $\exists v_2(v_2 \neq v_2) \quad ??? \quad \exists v_3(v_3 \neq v_2) \quad \checkmark$

Gödel's argument is applicable to \mathcal{L} if at least the following holds:

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- 3 $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
- 4 $\exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences
- **5** $\exists \mathcal{H} \subseteq \mathcal{E}, \mathcal{H}$ are the predicates of \mathcal{L} , that is $H \in \mathcal{H}$ names a set of natural numbers
- **6** \exists function Φ that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H
- **7** $\exists \mathcal{T} \subseteq \mathcal{S}$, the true sentences

Gödel's argument is applicable to \mathcal{L} if at least the following holds:

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- 3 $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
- 4 $\exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences
- **5** $\exists \mathcal{H} \subseteq \mathcal{E}, \mathcal{H}$ are the predicates of \mathcal{L} , that is $H \in \mathcal{H}$ names a set of natural numbers
- **6** \exists function Φ that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H
- **7** $\exists \mathcal{T} \subseteq \mathcal{S}$, the true sentences

Question

what do we need to prove Tarski's theorem?

Gödel's argument is applicable to \mathcal{L} if at least the following holds:

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences
- 4 $\exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences
- **5** $\exists \mathcal{H} \subseteq \mathcal{E}, \mathcal{H}$ are the predicates of \mathcal{L} , that is $H \in \mathcal{H}$ names a set of natural numbers
- **6** \exists function Φ that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H
- **7** $\exists \mathcal{T} \subseteq \mathcal{S}$, the true sentences

Question

what do we need to prove Tarski's theorem?

Gödel's argument is applicable to \mathcal{L} if at least the following holds:

- **1** \exists countable set of expressions \mathcal{E}
- **2** $\exists S \subseteq \mathcal{E}, S$ are the sentences

- **5** $\exists \mathcal{H} \subseteq \mathcal{E}, \mathcal{H}$ are the predicates of \mathcal{L} , that is $H \in \mathcal{H}$ names a set of natural numbers
- **6** \exists function Φ that maps expression E and number n to E(n); for predicates H(n) has to be a sentence: the sentences H(n) expresses that n belongs to the set named by H
- **7** $\exists \mathcal{T} \subseteq \mathcal{S}$, the true sentences

Question

what do we need to prove Tarski's theorem?

- I let A, B sentences, we say A and B are equivalent, if $A \models B$ and $B \models A$
- 2 let $A(v_{i_1}, \ldots, v_{i_n})$, $B(v_{i_1}, \ldots, v_{i_k})$ be formulas, we say they are equivalent, if all instances are equivalent

- I let A, B sentences, we say A and B are equivalent, if $A \models B$ and $B \models A$
- 2 let $A(v_{i_1}, \ldots, v_{i_n})$, $B(v_{i_1}, \ldots, v_{i_k})$ be formulas, we say they are equivalent, if all instances are equivalent

Definition

let $F(v_1)$ be a formula, $F(v_1, \ldots, v_n)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^n$

- I let A, B sentences, we say A and B are equivalent, if $A \models B$ and $B \models A$
- 2 let $A(v_{i_1}, \ldots, v_{i_n})$, $B(v_{i_1}, \ldots, v_{i_k})$ be formulas, we say they are equivalent, if all instances are equivalent

Definition

- let $F(v_1)$ be a formula, $F(v_1, \ldots, v_n)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^n$
 - **1** $F(v_1)$ expresses A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is true $\iff n \in A$

- I let A, B sentences, we say A and B are equivalent, if $A \models B$ and $B \models A$
- 2 let $A(v_{i_1}, \ldots, v_{i_n})$, $B(v_{i_1}, \ldots, v_{i_k})$ be formulas, we say they are equivalent, if all instances are equivalent

Definition

let $F(v_1)$ be a formula, $F(v_1, \ldots, v_n)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^n$

- **1** $F(v_1)$ expresses A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is true $\iff n \in A$
- 2 $F(v_1, \ldots, v_n)$ expresses R if for all $(m_1, \ldots, m_n) \in \mathbb{N}^n$:

$$F(\overline{m}_1,\ldots,\overline{m}_n)$$
 is true $\iff (m_1,\ldots,m_n) \in R$

- I let A, B sentences, we say A and B are equivalent, if $A \models B$ and $B \models A$
- 2 let $A(v_{i_1}, \ldots, v_{i_n})$, $B(v_{i_1}, \ldots, v_{i_k})$ be formulas, we say they are equivalent, if all instances are equivalent

Definition

let $F(v_1)$ be a formula, $F(v_1, \ldots, v_n)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^n$

- **1** $F(v_1)$ expresses A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is true $\iff n \in A$
- 2 $F(v_1, \ldots, v_n)$ expresses R if for all $(m_1, \ldots, m_n) \in \mathbb{N}^n$:

$$F(\overline{m}_1,\ldots,\overline{m}_n)$$
 is true $\iff (m_1,\ldots,m_n) \in R$

we also say that $F(v_1, \ldots, v_n)$ expresses the relation $R(x_1, \ldots, x_n)$

Definition

- **1** a set or relation is Arithmetic if expressible in \mathcal{L}_E
- 2 a set or relation is arithmetic if expressible in \mathcal{L}_E without exp

Definition

- **1** a set or relation is Arithmetic if expressible in \mathcal{L}_E
- 2 a set or relation is arithmetic if expressible in \mathcal{L}_E without exp

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Definition

- **1** a set or relation is Arithmetic if expressible in \mathcal{L}_E
- 2 a set or relation is arithmetic if expressible in \mathcal{L}_E without exp

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Question ①

does this imply that Gödel's theorem that there exists a true, but unprovable sentence?

Definition

- **1** a set or relation is Arithmetic if expressible in \mathcal{L}_E
- 2 a set or relation is arithmetic if expressible in \mathcal{L}_E without exp

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Question ①

does this imply that Gödel's theorem that there exists a true, but unprovable sentence?

Question 2

does it defeat Hilbert's program?

Concatenation and Gödel Numbering

Definition

let $b \ge 2$, we define the concatenation to the base *b* as follows:

$$m *_b n := m \cdot b^{|n|_b} + n$$

here m, n are numbers and $|n|_b$ denotes the length of the b-ary representation of n

Concatenation and Gödel Numbering

Definition

let $b \ge 2$, we define the concatenation to the base *b* as follows:

$$m \ast_{\mathbf{b}} n := m \cdot b^{|n|_{\mathbf{b}}} + n$$

here m, n are numbers and $|n|_b$ denotes the length of the b-ary representation of n

Lemma

for each $b \ge 2$, the relation $x *_b y = z$ is Arithmetic

Proof.

on white board

Fact

*_b is not associative:

$$(5 *_{10} 0) *_{10} 3 = 50 *_{10} 3 = 503$$
 $5 *_{10} (0 *_{10} 3) = 5 *_{10} 3 = 53$

so let's associate to the left

Fact

*_b is not associative:

 $(5 *_{10} 0) *_{10} 3 = 50 *_{10} 3 = 503$ $5 *_{10} (0 *_{10} 3) = 5 *_{10} 3 = 53$

so let's associate to the left

Corollary

for each $n \ge 2$ and for each $b \ge 2$, the relation

 $x_1 *_b x_2 *_b \cdots *_b x_n = z$

is Arithmetic

Proof.

by induction on n from the previous lemma