Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK
Winter 2011

The Language

Outline of the Lecture

General Idea Behind Gödel's Proof
abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}

Tarski's Theorem for Arithmetic

the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof

ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Homework

- Suppose \mathcal{L} is a correct system such that the following two conditions hold.
1 The set P^{*} is expressible in \mathcal{L}.
2 For any predicate H, there is a predicate H^{\prime} such that for every n, the sentence $H^{\prime}(n)$ is provable in \mathcal{L} iff $H(n)$ is refutable in \mathcal{L}.
Show that \mathcal{L} is incomplete.
- We say that a predicate H represents a set A in \mathcal{L} if for every number n, the sentence $H(n)$ is provable in \mathcal{L} iff $n \in A$.
Suppose \mathcal{L} is consistent. Show that if the set R^{*} is representable in \mathcal{L}, then \mathcal{L} is incomplete.
- Let us say that a predicate H contrarepresents of a set A in \mathcal{L} if for every number n, the sentence $H(n)$ is refutable in \mathcal{L} iff $n \in A$. Show that if the P^{*} is contrarepresentable in \mathcal{L} and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

GM (Institute of Computer Science @ UIBK;
Gödel's Incompleteness Theorem

The Language \mathcal{L}_{E}

First Step

we study number theory based on addition, multiplication, and exponentiation

Definition

the language \mathcal{L}_{E} contains the following 13 symbols:

$$
0 \prime(\quad f \quad, \quad \rightarrow \quad \forall \quad=\quad \#
$$

II $0^{\prime \prime \prime \prime}$ is a numeral and represents 4
$\boxed{2}{ }^{\prime}$ represents the successor function
$3 f_{\prime}, f_{\prime \prime}, f_{\prime \prime \prime}$ represents $+, \cdot, \exp$
$4 \neg, \rightarrow, \forall$, = are interpreted as usual
$5 \leqslant$ means "less than or equal"
6 (v^{\prime}), ($\mathrm{v}_{1 \prime}$), \ldots represents variables $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$

Definition

terms are defined inductively :
1 variables ($\mathrm{V}^{\prime} \ldots \mathrm{I}^{\prime}$) and numerals $0^{\prime} \ldots$. are terms
2 if s, t are terms, so are

$$
\underbrace{f_{1}(s, t)}_{(s+t)} \underbrace{f_{\prime \prime}(s, t)}_{(s \cdot t)} \underbrace{f_{\prime \prime \prime}(s, t)}_{(s \exp t)} \quad s^{\prime}
$$

terms without variables are called closed

Definition

$s=t$ or $s \leqslant t$ are atoms; formulas are defined inductively:
1 atoms are formulas
2 if A, B are formulas and v_{i} a variable, then

$$
\neg A \quad A \rightarrow B \quad \forall v_{i} A
$$

are formulas
GM (Institute of Computer Science © UIBK) Godel's Incompleteness Theorem
The Language
Definition
the degree of a formula is defined as follows:

$$
\operatorname{deg}(F):= \begin{cases}0 & F \text { is an atom } \\ \operatorname{deg}(A)+1 & (F=\neg A) \vee\left(F=\forall v_{i} A\right) \\ \operatorname{deg}(A)+\operatorname{deg}(B)+1 & F=(A \rightarrow B)\end{cases}
$$

Definition

we use the following symbols as abbreviations

$$
\begin{array}{rlrl}
(A \vee B) & :=\ldots & (A \wedge B) & :=\ldots \\
(A \leftrightarrow B) & :=\ldots & \exists v_{i} A & :=\ldots \\
s \neq t & :=\ldots & s<t & :=\ldots \\
s^{t} & :=s \exp t & \left(\forall v_{i} \leqslant t\right) F & :=\forall v_{i}\left(v_{i} \leqslant t \rightarrow F\right) \\
\left(\exists v_{i} \leqslant t\right) F & :=\exists v_{i}\left(v_{i} \leqslant t \wedge F\right) &
\end{array}
$$

Definition

1 free and bound variables are defined as usual
2 sentences or closed formulas of \mathcal{L}_{E} are defined as usual
3 an open formulas is a not-closed formula
we write \bar{n} for the numeral $0^{\prime} \ldots$ ' designating n

Definition

let v_{i} be a variable and F a formula
$1 F\left(v_{i}\right)$ denotes a formula, where v_{i} is the only free variable
$2 F(\bar{n})$ denotes $F\left(v_{i}\right)\left\{v_{i} \mapsto \bar{n}\right\}$
3 for n free variables we write $F\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$ and $F\left(\bar{m}_{1}, \ldots, \bar{m}_{n}\right)$
$4 F\left(\bar{m}_{1}, \ldots, \bar{m}_{n}\right)$ is instance of $F\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$
$5 F\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$ is regular if $i_{1}=1, \ldots i_{n}=n$
6 a regular formula can be written as $F\left(v_{1}, \ldots, v_{n}\right)$

The Notion of Truth in \mathcal{L}_{E}

Definition

let \mathcal{N} denote the standard model of number theory; the value of a closed term is defined as follows:

$$
t^{\mathcal{N}}:= \begin{cases}n & t=\bar{n} \\ c_{1} \mathcal{N}+c_{2}{ }^{\mathcal{N}} & t=\left(c_{1}+c_{2}\right) \\ c_{1} \mathcal{N}^{\mathcal{N}} \cdot c_{2} \mathcal{N}^{\mathcal{N}} & t=\left(c_{1} \cdot c_{2}\right) \\ \left(c_{1}^{\mathcal{N}}\right)^{c_{2} \mathcal{N}} & t=\left(c_{1} \exp c_{2}\right) \\ \mathcal{N}^{\mathcal{N}}+1 & t=c^{\prime}\end{cases}
$$

Example

consider the closed term

$$
c:=\left(\left(0^{\prime \prime \prime}+0^{\prime}\right) \cdot\left(0^{\prime \prime} \exp 0^{\prime \prime \prime}\right)\right)^{\prime}
$$

Then $\mathcal{C}^{\mathcal{N}}=\left(4 \cdot 2^{3}\right)+1=33$

Satisfaction Relation (Adapted)

Definition

let F be a sentence, $\mathcal{N} \models F$ is defined as:

$$
\begin{array}{ll}
\mathcal{N} \models c_{1}=c_{2} & \Longleftrightarrow \text { if } c_{1} \mathcal{N}=c_{2}{ }^{\mathcal{N}} \\
\mathcal{N} \models c_{1} \leqslant c_{2} & \Longleftrightarrow \text { if } c_{1} \mathcal{N} \leqslant c_{2}{ }^{\mathcal{N}} \\
\mathcal{N} \models \neg A & \Longleftrightarrow \text { if } \mathcal{N} \not \models A \\
\mathcal{N} \models A \rightarrow B & \Longleftrightarrow \text { if } \mathcal{N} \models A, \text { then } \mathcal{N} \models B \\
\mathcal{N} \models \forall v_{i} A & \Longleftrightarrow \text { if } \mathcal{N} \models A(\bar{n}) \text { holds for all } n \in \mathbb{N}
\end{array}
$$

if $\mathcal{N} \models F$, then F is true

Definition

an open formula $F\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$ is said to be correct if the sentence $F\left(\bar{m}_{1}, \ldots, \bar{m}_{n}\right)$ is true for all numbers m_{1}, \ldots, m_{n}

Notion of Truth in \mathcal{L}_{E}

Recall

Gödel's argument is applicable to \mathcal{L} if at least the following holds:
$1 \exists$ countable set of expressions \mathcal{E}
2 $\exists \mathcal{S} \subseteq \mathcal{E}, \mathcal{S}$ are the sentences
ß $\exists \mathcal{P} \subseteq \mathcal{S}$, the provable sentences
$4 \exists \mathcal{R} \subseteq \mathcal{S}$, the refutable sentences
5 $\exists \mathcal{H} \subseteq \mathcal{E}, \mathcal{H}$ are the predicates of \mathcal{L}, that is $H \in \mathcal{H}$ names a set of natural numbers
б \exists function Φ that maps expression E and number n to $E(n)$; for predicates $H(n)$ has to be a sentence: the sentences $H(n)$ expresses that n belongs to the set named by H
$7 \exists \mathcal{T} \subseteq \mathcal{S}$, the true sentences

Question
what do we need to prove Tarski's theorem?

Substitution of Variables

Definition

consider a formula $F\left(v_{1}\right)$ and let $v_{i} \neq v_{1}$ be a variable; we define $F\left(v_{i}\right)$ as follows:
1 assume v_{i} is free for $F\left(v_{1}\right)$, then $F\left(v_{i}\right):=F\left(v_{1}\right)\left\{v_{1} \mapsto v_{i}\right\}$
2 assume v_{i} is not free for $F\left(v_{1}\right)$

- let v_{j} be variable that is free for $F\left(v_{1}\right)$ (such that j is minimal)
- define $F^{\prime}\left(v_{1}\right):=F\left\{v_{i} \mapsto v_{i}\right\}$
- set $F\left(v_{i}\right):=F^{\prime}\left(v_{i}\right)$, that is, we define $F\left(v_{i}\right):=F^{\prime}\left(v_{1}\right)\left\{v_{1} \mapsto v_{i}\right\}$

Example

let $F\left(v_{1}\right)$ be $\exists v_{2}\left(v_{2} \neq v_{1}\right)$, then what is $F\left(v_{2}\right)$?

$$
\exists v_{2}\left(v_{2} \neq v_{2}\right) \quad ? ? ? \quad \exists v_{3}\left(v_{3} \neq v_{2}\right) \quad \checkmark
$$

Definition

1 let A, B sentences, we say A and B are equivalent, if $A \models B$ and $B \models A$
2 let $A\left(v_{i_{1}}, \ldots, v_{i_{n}}\right), B\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$ be formulas, we say they are equivalent, if all instances are equivalent

Definition

let $F\left(v_{1}\right)$ be a formula, $F\left(v_{1}, \ldots, v_{n}\right)$ a regular formula,
A be a set, and $R \subseteq \mathbb{N}^{n}$
$1 F\left(v_{1}\right)$ expresses A if for all $n \in \mathbb{N}: F(\bar{n})$ is true $\Longleftrightarrow n \in A$
$2 F\left(v_{1}, \ldots, v_{n}\right)$ expresses R if for all $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$:

$$
F\left(\bar{m}_{1}, \ldots, \bar{m}_{n}\right) \text { is true } \Longleftrightarrow\left(m_{1}, \ldots, m_{n}\right) \in R
$$

we also say that $F\left(v_{1}, \ldots, v_{n}\right)$ expresses the relation $R\left(x_{1}, \ldots, x_{n}\right)$

Tarski's Theorem

Definition

1 a set or relation is Arithmetic if expressible in \mathcal{L}_{E}
$\boxed{2}$ a set or relation is arithmetic if expressible in \mathcal{L}_{E} without exp

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Question (1)
does this imply that Gödel's theorem that there exists a true, but unprovable sentence?

Question (2)
does it defeat Hilbert's program?

Concatenation and Gödel Numbering

Definition

let $b \geqslant 2$, we define the concatenation to the base b as follows:

$$
m *_{b} n:=m \cdot b^{\mid n_{b}}+n
$$

here m, n are numbers and $|n|_{b}$ denotes the length of the b-ary representation of n

Lemma
for each $b \geqslant 2$, the relation $x *_{b} y=z$ is Arithmetic

Proof.
on white board

Fact

$*_{b}$ is not associative:

$$
\left(5 *_{10} 0\right) *_{10} 3=50 *_{10} 3=503 \quad 5 *_{10}\left(0 *_{10} 3\right)=5 *_{10} 3=53
$$

so let's associate to the left

Corollary
for each $n \geqslant 2$ and for each $b \geqslant 2$, the relation

$$
x_{1} *_{b} x_{2} *_{b} \cdots *_{b} x_{n}=z
$$

is Arithmetic

Proof.
by induction on n from the previous lemma

