

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Summary of Last Lecture

Definition

let $F(v_1)$ be a formula, $F(v_1, ..., v_n)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^n$

- **I** $F(v_1)$ expresses A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is true $\iff n \in A$
- $F(v_1,\ldots,v_n)$ expresses R if for all $(m_1,\ldots,m_n)\in\mathbb{N}^n$:

$$F(\overline{m}_1,\ldots,\overline{m}_n)$$
 is true $\iff (m_1,\ldots,m_n)\in R$

we also say that $F(v_1,\ldots,v_n)$ expresses the relation $R(x_1,\ldots,x_n)$

Definition

- 1 a set or relation is Arithmetic if expressible in \mathcal{L}_F
- 2 a set or relation is arithmetic if expressible in \mathcal{L}_F without exp

Homework

• For any set A of natural numbers and any function f(x) (from natural numbers to natural numbers) by $f^{-1}(A)$, we mean the set of all n such that $f(n) \in A$. Prove that if A and f are Arithmetic, then so is $f^{-1}(A)$. Show the same for arithmetic.

•

- I Given two Arithmetic functions f(x) and g(y), show that the function f(g(y)) is Arithmetic.
- 2 Given two Arithmetic functions f(x) and g(x, y), show that the functions g(f(y), y), g(x, f(y)) and f(g(x, y)) are all Arithmetic.
- Let A be an infinite Arithmetic set. Then for any number y (whether in A or not), there must be an element x of A which is greater than y. Let R(x,y) be the relation: x is the smallest element of A greater than y. Prove that R(x,y) is Arithmetic.

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 -complete subsystems, ω -incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-consistency, a basic incompleteness theorem, }\omega\text{-consistency lemma, }\Sigma_0\text{-complete subsystems, }\omega\text{-incompleteness of PA}$

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Definition

1 to every symbol in \mathcal{L}_E we assign a number ≤ 12

$$0$$
 ' () f , $v \neg \rightarrow \forall = \leqslant \#$

Definition

1 to every symbol in \mathcal{L}_E we assign a number $\leqslant 12$

```
0 ' ( ) f , v \neg \rightarrow \forall = \leqslant # 1 0 2 3 4 5 6 7 8 9 10 11 12
```

Definition

1 to every symbol in \mathcal{L}_E we assign a number $\leqslant 12$

```
0 ' ( ) f , v \neg \rightarrow \forall = \leqslant \#
1 0 2 3 4 5 6 7 8 9 10 11 12
```

Definition

f 1 to every symbol in \mathcal{L}_E we assign a number $\leqslant 12$

0 ' () f , v
$$\neg$$
 \rightarrow \forall = \leqslant # 1 0 2 3 4 5 6 7 8 9 10 11 12 η ϵ δ

 $\mathbf{2}$ for any expression E:

```
F:= the concatenation of the Gödel numbers of the symbols to the base 13
```

Definition

 $lue{1}$ to every symbol in \mathcal{L}_E we assign a number $\leqslant 12$

0 ' () f , v
$$\neg$$
 \rightarrow \forall = \leqslant # 1 0 2 3 4 5 6 7 8 9 10 11 12 η ϵ δ

- $\mathbf{2}$ for any expression E:
 - $\lceil E \rceil$:= the concatenation of the Gödel numbers of the symbols to the base 13
- **3** E_n (n > 0) denotes the expression with Gödel number n;

Definition

 $lue{1}$ to every symbol in \mathcal{L}_E we assign a number $\leqslant 12$

0 ' () f , v
$$\neg$$
 \rightarrow \forall = \leqslant # 1 0 2 3 4 5 6 7 8 9 10 11 12 η ϵ δ

2 for any expression E:

F:= the concatenation of the Gödel numbers of the symbols to the base 13

3 E_n (n > 0) denotes the expression with Gödel number n; $E_0 := 1$

Definition

 $lue{1}$ to every symbol in \mathcal{L}_E we assign a number $\leqslant 12$

0 ' () f , v
$$\neg$$
 \rightarrow \forall = \leqslant # 1 0 2 3 4 5 6 7 8 9 10 11 12 η ϵ δ

- $\mathbf{2}$ for any expression E:
 - $\lceil E \rceil$:= the concatenation of the Gödel numbers of the symbols to the base 13
- **3** E_n (n > 0) denotes the expression with Gödel number n; $E_0 := '$

Example

consider the numeral \overline{n} :

$$\lceil \overline{n} \rceil = \lceil 0' \cdots' \rceil = 1 *_{13} 0 *_{13} \cdots *_{13} 0 = 13^n$$

Definition (Tarski's Trick)

let E be an formula and $e, n \in \mathbb{N}$

• set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \to E)$

Definition (Tarski's Trick)

let E be an formula and $e, n \in \mathbb{N}$

- set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \to E)$
- as E is a formula, $E[\overline{n}]$ is a formula

Definition (Tarski's Trick)

let *E* be an formula and $e, n \in \mathbb{N}$

- set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \to E)$
- as E is a formula, $E[\overline{n}]$ is a formula
- if E is a formula, whose only free variable is v_1 , then $E[\overline{n}]$ is even a sentence:

$$E[\overline{n}] = \forall v_1(v_1 = \overline{n} \to E(v_1))$$

Definition (Tarski's Trick)

let *E* be an formula and $e, n \in \mathbb{N}$

- set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \to E)$
- as E is a formula, $E[\overline{n}]$ is a formula
- if E is a formula, whose only free variable is v_1 , then $E[\overline{n}]$ is even a sentence:

$$\underline{E}[\overline{n}] = \forall v_1(v_1 = \overline{n} \to E(v_1))$$

• clearly $E(\overline{n})$ and $E[\overline{n}]$ are equivalent

Definition (Tarski's Trick)

let *E* be an formula and $e, n \in \mathbb{N}$

- set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \rightarrow E)$
- as E is a formula, $E[\overline{n}]$ is a formula
- if E is a formula, whose only free variable is v_1 , then $E[\overline{n}]$ is even a sentence:

$$\underline{E}[\overline{n}] = \forall v_1(v_1 = \overline{n} \to E(v_1))$$

• clearly $E(\overline{n})$ and $E[\overline{n}]$ are equivalent

Definition (representation function)

• set $r(e, n) := \lceil E[\overline{n}] \rceil$, where $\lceil E \rceil = e$

Definition (Tarski's Trick)

let *E* be an formula and $e, n \in \mathbb{N}$

- set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \rightarrow E)$
- as E is a formula, $E[\overline{n}]$ is a formula
- if E is a formula, whose only free variable is v_1 , then $E[\overline{n}]$ is even a sentence:

$$E[\overline{n}] = \forall v_1(v_1 = \overline{n} \to E(v_1))$$

• clearly $E(\overline{n})$ and $E[\overline{n}]$ are equivalent

Definition (representation function)

- set $r(e, n) := \lceil E[\overline{n}] \rceil$, where $\lceil E \rceil = e$
- thus the representation function r(x, y) is the Gödel number of $E_x[\overline{y}]$

the function r(x, y) is Arithmetic

Proof.

on the white board

the function r(x, y) is Arithmetic

Proof.

on the white board

Definition

• we define a concrete diagonal function: d(x) := r(x, x)

the function r(x, y) is Arithmetic

Proof.

on the white board

Definition

- we define a concrete diagonal function: d(x) := r(x, x)
- for any set A, we define $A^* := \{n \in \mathbb{N} \mid d(n) \in A\}$ (as in the abstract setting)

the function r(x, y) is Arithmetic

Proof.

on the white board

Definition

- we define a concrete diagonal function: d(x) := r(x, x)
- for any set A, we define $A^* := \{n \in \mathbb{N} \mid d(n) \in A\}$ (as in the abstract setting)

Lemma ①

if A is Arithmetic, then so is A^*

Proof.

on the white board

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds \iff $n \in A$

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds $\iff n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds $\iff n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds $\iff n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

Proof.

1 suppose *A* is Arithmetic

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds \iff $n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

- 1 suppose *A* is Arithmetic
- **2** by Lemma ①, A^* is Arithmetic

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds \iff $n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

- 1 suppose *A* is Arithmetic
- 2 by Lemma ①, A^* is Arithmetic
- **3** suppose $H(v_1)$ expresses A^* and let $h := \lceil H \rceil$

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds $\iff n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

- suppose A is Arithmetic
- **2** by Lemma ①, A^* is Arithmetic
- **3** suppose $H(v_1)$ expresses A^* and let $h := \lceil H \rceil$
- 4 hence we obtain:

$$H[\overline{h}]$$
 is true $\iff h \in A^* \iff d(h) \in A \iff \lceil H[\overline{h}] \rceil \in A$

 E_n is a Gödel sentence for a number set A, if

$$E_n$$
 holds $\iff n \in A$

Theorem ①

for every Arithmetic set A, there is a Gödel sentence for A

Proof.

- suppose A is Arithmetic
- 2 by Lemma ①, A^* is Arithmetic
- **3** suppose $H(v_1)$ expresses A^* and let $h := \lceil H \rceil$
- 4 hence we obtain:

$$H[\overline{h}]$$
 is true $\iff h \in A^* \iff d(h) \in A \iff \lceil H[\overline{h}] \rceil \in A$

5 we conclude that $H[\overline{h}]$ is a Gödel sentence for A

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly

1 suppose T is Arithmetic, that is, there exists a formula $F(v_1)$ that expresses T

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

- **1** suppose T is Arithmetic, that is, there exists a formula $F(v_1)$ that expresses T
- 2 then $\neg F(v_1)$ expresses $\sim T$, and $\sim T$ is Arithmetic

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

- 1 suppose T is Arithmetic, that is, there exists a formula $F(v_1)$ that expresses T
- **2** then $\neg F(v_1)$ expresses $\sim T$, and $\sim T$ is Arithmetic
- 3 hence there exists a Gödel sentence for $\sim T$

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

- 1 suppose T is Arithmetic, that is, there exists a formula $F(v_1)$ that expresses T
- **2** then $\neg F(v_1)$ expresses $\sim T$, and $\sim T$ is Arithmetic
- 3 hence there exists a Gödel sentence for $\sim T$
- 4 let E_n be a Gödel sentence of $\sim T$, that is E_n holds iff $n \notin T$

Tarski's Theorem

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly

- **1** suppose T is Arithmetic, that is, there exists a formula $F(v_1)$ that expresses T
- **2** then $\neg F(v_1)$ expresses $\sim T$, and $\sim T$ is Arithmetic
- 3 hence there exists a Gödel sentence for $\sim T$
- 4 let E_n be a Gödel sentence of $\sim T$, that is E_n holds iff $n \notin T$
- 5 this is absurd and we arrive at a contradiction

Tarski's Theorem

Theorem

The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly

- **1** suppose T is Arithmetic, that is, there exists a formula $F(v_1)$ that expresses T
- **2** then $\neg F(v_1)$ expresses $\sim T$, and $\sim T$ is Arithmetic
- 3 hence there exists a Gödel sentence for $\sim T$
- 4 let E_n be a Gödel sentence of $\sim T$, that is E_n holds iff $n \notin T$
- 5 this is absurd and we arrive at a contradiction

The Abstract Framework (revisited)

Discussion ①

compare to the abstract framework:

- ullet ${\cal E}$ are expressions of ${\cal L}_{\it E}$
- $\mathcal S$ are sentences of $\mathcal L_E$
- \mathcal{H} are formulas $F(v_1)$, where only v_1 is free
- $\Phi(E, n) := E[\overline{n}]$
- ullet ${\cal T}$ are the true sentences of ${\cal L}_{\it E}$
- $g(\cdot)$ becomes $\lceil \cdot \rceil$

The Abstract Framework (revisited)

Discussion ①

compare to the abstract framework:

- ullet ${\cal E}$ are expressions of ${\cal L}_{\it E}$
- $\mathcal S$ are sentences of $\mathcal L_E$
- \mathcal{H} are formulas $F(v_1)$, where only v_1 is free
- $\Phi(E, n) := E[\overline{n}]$
- ullet ${\cal T}$ are the true sentences of ${\cal L}_{\it E}$
- g(·) becomes 「·¬

Recall

- G1 \forall sets A expressible in \mathcal{L} , A^* is expressible in \mathcal{L}
- G2 \forall sets A expressible in \mathcal{L} , $\sim A$ is expressible in \mathcal{L}

Recall

 $let T := \{g(S) \mid S \in T\}$

- lacksquare $(\sim T)^*$ is not nameable in $\mathcal L$
- **2** if G1 holds, then $\sim T$ is not nameable in $\mathcal L$
- ${f 3}$ if G1 & G2 hold, then ${\it T}$ is not nameable in ${\it L}$

Recall

let
$$T := \{g(S) \mid S \in \mathcal{T}\}$$

- $\ \ \, \textbf{1} \ (\sim \mathcal{T})^*$ is not nameable in \mathcal{L}
- $oldsymbol{2}$ if G1 holds, then $\sim T$ is not nameable in ${\cal L}$
- ${f 3}$ if G1 & G2 hold, then ${\it T}$ is not nameable in ${\it L}$

Discussion 2

observe that

Recall

let
$$T := \{g(S) \mid S \in \mathcal{T}\}$$

- lacksquare $(\sim T)^*$ is not nameable in $\mathcal L$
- **2** if G1 holds, then $\sim T$ is not nameable in $\mathcal L$
- ${f 3}$ if G1 & G2 hold, then ${\cal T}$ is not nameable in ${\cal L}$

Discussion ②

observe that

 \blacksquare property G1 is expressed by Lemma 1 and property G2 is trivial for the set of Arithmetic sentences

Recall

$$let T := \{g(S) \mid S \in T\}$$

- lacksquare $(\sim T)^*$ is not nameable in $\mathcal L$
- **2** if G1 holds, then $\sim T$ is not nameable in $\mathcal L$
- ${f 3}$ if G1 & G2 hold, then ${\cal T}$ is not nameable in ${\cal L}$

Discussion ②

observe that

- \blacksquare property G1 is expressed by Lemma 1 and property G2 is trivial for the set of Arithmetic sentences
- 2 Theorem ① is the second part of the Diagonal Lemma

Recall

let
$$T := \{g(S) \mid S \in \mathcal{T}\}$$

- lacksquare $(\sim T)^*$ is not nameable in $\mathcal L$
- **2** if G1 holds, then $\sim T$ is not nameable in $\mathcal L$
- ${f 3}$ if G1 & G2 hold, then ${f T}$ is not nameable in ${\cal L}$

Discussion ②

observe that

- \blacksquare property G1 is expressed by Lemma 1 and property G2 is trivial for the set of Arithmetic sentences
- 2 Theorem ① is the second part of the Diagonal Lemma

thus Tarski's Theorem for \mathcal{L}_E is nothing but an instance of the abstract form of Tarski's Theorem

The Axiom System PE

Definition (Propositional Logic)

$$L_1: F \to (G \to F)$$

$$L_2$$
: $F \rightarrow (G \rightarrow H)) \rightarrow ((F \rightarrow G) \rightarrow (F \rightarrow H))$

$$L_3$$
: $(\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$

The Axiom System PE

Definition (Propositional Logic)

$$L_1: F \to (G \to F)$$

$$L_2$$
: $F \to (G \to H)) \to ((F \to G) \to (F \to H))$

$$L_3$$
: $(\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$

Definition (First-Order Logic with Identity)

$$L_4$$
: $\forall v_i(F \to G) \to (\forall v_i F \to \forall v_i G)$

$$L_5$$
: $F \rightarrow \forall v_i F$

$$L_6$$
: $\exists v_i(v_i=t)$

$$L_7$$
: $v_i = t \rightarrow (X_1 v_i X_2 \rightarrow X_1 t X_2)$

where v_i doesn't occur in F or in t and X_1, X_2 are expressions, such that $X_1v_iX_2$ is an atom

Definition (Axioms of Arithmetic)

$$N_1: v_1' = v_2' \to v_1 = v_2$$

$$N_2$$
: $\overline{0} \neq v_1'$

$$N_3$$
: $(v_1 + \overline{0}) = v_1$

$$N_4$$
: $(v_1 + v_2') = (v_1 + v_2)'$

$$N_5$$
: $(v_1 \cdot \overline{0}) = \overline{0}$

$$N_6$$
: $(v_1 \cdot v_2') = ((v_1 \cdot v_2) + v_1)$

$$N_7$$
: $(v_1 \leqslant \overline{0}) \leftrightarrow (v_1 = \overline{0})$

$$N_8$$
: $(v_1 \leqslant v_2') \leftrightarrow (v_1 \leqslant v_2 \lor v_1 = v_2')$

$$N_9$$
: $(v_1 \leqslant v_2) \lor (v_2 \leqslant v_1)$

$$N_{10}$$
: $(v_1 \exp \overline{0}) = \overline{0}'$

$$N_{11}$$
: $(v_1 \exp v_2') = ((v_1 \exp v_2) \cdot v_1)$

Definition (Induction Schema)

Definition (Induction Schema)

1 let $F(v_1)$ denote a formula with a free variable v_1

Definition (Induction Schema)

- 1 let $F(v_1)$ denote a formula with a free variable v_1
- 2 let $F[v_1]$ denote any of

$$\forall v_i(v_i = v_1' \to \forall v_1(v_1 = v_i \to F)$$

where v_i doesn't occur in F

Definition (Induction Schema)

- 1 let $F(v_1)$ denote a formula with a free variable v_1
- 2 let $F[v_1]$ denote any of

$$\forall v_i(v_i = v_1' \to \forall v_1(v_1 = v_i \to F)$$

where v_i doesn't occur in F

then

$$N_{12}$$
: $F[\overline{0}] \rightarrow (\forall v_1(F(v_1) \rightarrow F[v'_1]) \rightarrow \forall v_1F(v_1))$

Definition (Induction Schema)

- 1 let $F(v_1)$ denote a formula with a free variable v_1
- 2 let $F[v_1]$ denote any of

$$\forall v_i(v_i = v_1' \to \forall v_1(v_1 = v_i \to F)$$

where v_i doesn't occur in F then

$$N_{12}$$
: $F[\overline{0}] \rightarrow (\forall v_1(F(v_1) \rightarrow F[v'_1]) \rightarrow \forall v_1F(v_1))$

Definition (Inference Rules)

$$\frac{F \to G - F}{G}$$
 Modus Ponens

$$\frac{F}{\forall v_i F}$$
 Generalisation