Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK
Winter 2011

Summary of Last Lecture

Definition

let $F\left(v_{1}\right)$ be a formula, $F\left(v_{1}, \ldots, v_{n}\right)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^{n}$
$1 F\left(v_{1}\right)$ expresses A if for all $n \in \mathbb{N}: F(\bar{n})$ is true $\Longleftrightarrow n \in A$
$2 F\left(v_{1}, \ldots, v_{n}\right)$ expresses R if for all $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$:

$$
F\left(\bar{m}_{1}, \ldots, \bar{m}_{n}\right) \text { is true } \Longleftrightarrow\left(m_{1}, \ldots, m_{n}\right) \in R
$$

we also say that $F\left(v_{1}, \ldots, v_{n}\right)$ expresses the relation $R\left(x_{1}, \ldots, x_{n}\right)$

Definition

1 a set or relation is Arithmetic if expressible in \mathcal{L}_{E}
2 a set or relation is arithmetic if expressible in \mathcal{L}_{E} without exp

Homework

- For any set A of natural numbers and any function $f(x)$ (from natural numbers to natural numbers) by $f^{-1}(A)$, we mean the set of all n such that $f(n) \in A$. Prove that if A and f are Arithmetic, then so is $f^{-1}(A)$. Show the same for arithmetic.

1 Given two Arithmetic functions $f(x)$ and $g(y)$, show that the function $f(g(y))$ is Arithmetic.
2 Given two Arithmetic functions $f(x)$ and $g(x, y)$, show that the functions $g(f(y), y), g(x, f(y))$ and $f(g(x, y))$ are all Arithmetic.

- Let A be an infinite Arithmetic set. Then for any number y (whether in A or not), there must be an element x of A which is greater than y. Let $R(x, y)$ be the relation: x is the smallest element of A greater than y. Prove that $R(x, y)$ is Arithmetic.

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

$$
0,() f, v \neg \rightarrow \forall=\leqslant
$$

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

$$
\begin{array}{ccccccccccccc}
0 & \prime & (&) & f & , & v & \neg & \rightarrow & \forall & = & \leqslant & \# \\
1 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

$$
\begin{array}{ccccccccccccc}
0 & \prime & (&) & f & , & v & \neg & \rightarrow & \forall & = & \leqslant & \# \\
1 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& & & & & & & & & \eta & \epsilon & \delta
\end{array}
$$

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

$$
\begin{array}{ccccccccccccc}
0 & \prime & (&) & f & , & v & \neg & \rightarrow & \forall & = & \leqslant & \# \\
1 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& & & & & & & & & \eta & \epsilon & \delta
\end{array}
$$

2 for any expression E :
$\ulcorner E\urcorner:=$ the concatenation of the Gödel numbers of the symbols to the base 13

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

2 for any expression E :
$\ulcorner E\urcorner:=$ the concatenation of the Gödel numbers of the symbols to the base 13
$3 E_{n}(n>0)$ denotes the expression with Gödel number n;

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

$$
\begin{array}{ccccccccccccc}
0 & \prime & (&) & f & , & v & \neg & \rightarrow & \forall & = & \leqslant & \# \\
1 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& & & & & & & & & \eta & \epsilon & \delta
\end{array}
$$

2 for any expression E :
$\ulcorner E\urcorner:=$ the concatenation of the Gödel numbers of the symbols to the base 13
$3 E_{n}(n>0)$ denotes the expression with Gödel number $n ; E_{0}:={ }^{\prime}$

Gödel Numbering

Definition

1 to every symbol in \mathcal{L}_{E} we assign a number $\leqslant 12$

$$
\begin{array}{ccccccccccccc}
0 & \prime & (&) & f & , & v & \neg & \rightarrow & \forall & = & \leqslant & \# \\
1 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& & & & & & & & & \eta & \epsilon & \delta
\end{array}
$$

2 for any expression E :
$\ulcorner E\urcorner:=$ the concatenation of the Gödel numbers of the symbols to the base 13
$3 E_{n}(n>0)$ denotes the expression with Gödel number $n ; E_{0}:={ }^{\prime}$

Example

consider the numeral \bar{n} :

$$
\ulcorner\bar{n}\urcorner=\left\ulcorner 0^{\prime} \cdots \prime\right\urcorner=1 *_{13} 0 *_{13} \cdots *_{13} 0=13^{n}
$$

A Clever Trick by Tarski

Definition (Tarski's Trick)
let E be an formula and $e, n \in \mathbb{N}$

- set $E[\bar{n}]:=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$

A Clever Trick by Tarski

Definition (Tarski's Trick)
let E be an formula and $e, n \in \mathbb{N}$

- set $E[\bar{n}]:=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$
- as E is a formula, $E[\bar{n}]$ is a formula

A Clever Trick by Tarski

Definition (Tarski's Trick)

let E be an formula and $e, n \in \mathbb{N}$

- set $E[\bar{n}]:=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$
- as E is a formula, $E[\bar{n}]$ is a formula
- if E is a formula, whose only free variable is v_{1}, then $E[\bar{n}]$ is even a sentence:

$$
E[\bar{n}]=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\left(v_{1}\right)\right)
$$

A Clever Trick by Tarski

Definition (Tarski's Trick)
let E be an formula and $e, n \in \mathbb{N}$

- set $E[\bar{n}]:=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$
- as E is a formula, $E[\bar{n}]$ is a formula
- if E is a formula, whose only free variable is v_{1}, then $E[\bar{n}]$ is even a sentence:

$$
E[\bar{n}]=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\left(v_{1}\right)\right)
$$

- clearly $E(\bar{n})$ and $E[\bar{n}]$ are equivalent

A Clever Trick by Tarski

Definition (Tarski's Trick)
let E be an formula and $e, n \in \mathbb{N}$

- set $E[\bar{n}]:=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$
- as E is a formula, $E[\bar{n}]$ is a formula
- if E is a formula, whose only free variable is v_{1}, then $E[\bar{n}]$ is even a sentence:

$$
E[\bar{n}]=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\left(v_{1}\right)\right)
$$

- clearly $E(\bar{n})$ and $E[\bar{n}]$ are equivalent

Definition (representation function)

- set $r(e, n):=\ulcorner E[\bar{n}]\urcorner$, where $\ulcorner E\urcorner=e$

A Clever Trick by Tarski

Definition (Tarski's Trick)
let E be an formula and $e, n \in \mathbb{N}$

- set $E[\bar{n}]:=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$
- as E is a formula, $E[\bar{n}]$ is a formula
- if E is a formula, whose only free variable is v_{1}, then $E[\bar{n}]$ is even a sentence:

$$
E[\bar{n}]=\forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\left(v_{1}\right)\right)
$$

- clearly $E(\bar{n})$ and $E[\bar{n}]$ are equivalent

Definition (representation function)

- set $r(e, n):=\ulcorner E[\bar{n}]\urcorner$, where $\ulcorner E\urcorner=e$
- thus the representation function $r(x, y)$ is the Gödel number of $E_{x}[\bar{y}]$

Lemma

the function $r(x, y)$ is Arithmetic
Proof. on the white board

Lemma

the function $r(x, y)$ is Arithmetic
Proof. on the white board

Definition

- we define a concrete diagonal function: $d(x):=r(x, x)$

Lemma

the function $r(x, y)$ is Arithmetic
Proof.
on the white board

Definition

- we define a concrete diagonal function: $d(x):=r(x, x)$
- for any set A, we define $A^{*}:=\{n \in \mathbb{N} \mid d(n) \in A\}$ (as in the abstract setting)

Lemma

the function $r(x, y)$ is Arithmetic
Proof.
on the white board

Definition

- we define a concrete diagonal function: $d(x):=r(x, x)$
- for any set A, we define $A^{*}:=\{n \in \mathbb{N} \mid d(n) \in A\}$ (as in the abstract setting)

Lemma (1)
if A is Arithmetic, then so is A^{*}
Proof.
on the white board

Recall
E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A
Proof.

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A
Proof.
1 suppose A is Arithmetic

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A

Proof.

1 suppose A is Arithmetic
2 by Lemma (1), A^{*} is Arithmetic

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A

Proof.

1 suppose A is Arithmetic
2 by Lemma (1), A^{*} is Arithmetic
3 suppose $H\left(v_{1}\right)$ expresses A^{*} and let $h:=\ulcorner H\urcorner$

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A

Proof.

1 suppose A is Arithmetic
2 by Lemma (1), A^{*} is Arithmetic
3 suppose $H\left(v_{1}\right)$ expresses A^{*} and let $h:=\ulcorner H\urcorner$
4 hence we obtain:

$$
H[\bar{h}] \text { is true } \Longleftrightarrow h \in A^{*} \Longleftrightarrow d(h) \in A \Longleftrightarrow\ulcorner H[\bar{h}]\urcorner \in A
$$

Recall

E_{n} is a Gödel sentence for a number set A, if

$$
E_{n} \text { holds } \Longleftrightarrow n \in A
$$

Theorem (1)
for every Arithmetic set A, there is a Gödel sentence for A

Proof.

1 suppose A is Arithmetic
2 by Lemma (1), A^{*} is Arithmetic
3 suppose $H\left(v_{1}\right)$ expresses A^{*} and let $h:=\ulcorner H\urcorner$
4 hence we obtain:

$$
H[\bar{h}] \text { is true } \Longleftrightarrow h \in A^{*} \Longleftrightarrow d(h) \in A \Longleftrightarrow\ulcorner H[\bar{h}]\urcorner \in A
$$

5 we conclude that $H[\bar{h}]$ is a Gödel sentence for A

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.
we argue indirectly

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly
1 suppose T is Arithmetic, that is, there exists a formula $F\left(v_{1}\right)$ that expresses T

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly
1 suppose T is Arithmetic, that is, there exists a formula $F\left(v_{1}\right)$ that expresses T
2 then $\neg F\left(v_{1}\right)$ expresses $\sim T$, and $\sim T$ is Arithmetic

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly
1 suppose T is Arithmetic, that is, there exists a formula $F\left(v_{1}\right)$ that expresses T
2 then $\neg F\left(v_{1}\right)$ expresses $\sim T$, and $\sim T$ is Arithmetic
3 hence there exists a Gödel sentence for $\sim T$

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly
1 suppose T is Arithmetic, that is, there exists a formula $F\left(v_{1}\right)$ that expresses T
2 then $\neg F\left(v_{1}\right)$ expresses $\sim T$, and $\sim T$ is Arithmetic
3 hence there exists a Gödel sentence for $\sim T$
4 let E_{n} be a Gödel sentence of $\sim T$, that is E_{n} holds iff $n \notin T$

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly
1 suppose T is Arithmetic, that is, there exists a formula $F\left(v_{1}\right)$ that expresses T
2 then $\neg F\left(v_{1}\right)$ expresses $\sim T$, and $\sim T$ is Arithmetic
3 hence there exists a Gödel sentence for $\sim T$
4 let E_{n} be a Gödel sentence of $\sim T$, that is E_{n} holds iff $n \notin T$
5 this is absurd and we arrive at a contradiction

Tarski's Theorem

Theorem
The set T of Gödel numbers of the true Arithmetic sentences is not Arithmetic

Proof.

we argue indirectly
1 suppose T is Arithmetic, that is, there exists a formula $F\left(v_{1}\right)$ that expresses T
2 then $\neg F\left(v_{1}\right)$ expresses $\sim T$, and $\sim T$ is Arithmetic
3 hence there exists a Gödel sentence for $\sim T$
4 let E_{n} be a Gödel sentence of $\sim T$, that is E_{n} holds iff $n \notin T$
5 this is absurd and we arrive at a contradiction

The Abstract Framework (revisited)

Discussion (1)
compare to the abstract framework:

- \mathcal{E} are expressions of \mathcal{L}_{E}
- \mathcal{S} are sentences of \mathcal{L}_{E}
- \mathcal{H} are formulas $F\left(v_{1}\right)$, where only v_{1} is free
- $\Phi(E, n):=E[\bar{n}]$
- \mathcal{T} are the true sentences of \mathcal{L}_{E}
- $g(\cdot)$ becomes \ulcorner.

The Abstract Framework (revisited)

Discussion (1)
compare to the abstract framework:

- \mathcal{E} are expressions of \mathcal{L}_{E}
- \mathcal{S} are sentences of \mathcal{L}_{E}
- \mathcal{H} are formulas $F\left(v_{1}\right)$, where only v_{1} is free
- $\Phi(E, n):=E[\bar{n}]$
- \mathcal{T} are the true sentences of \mathcal{L}_{E}
- $g(\cdot)$ becomes \ulcorner.

Recall

G1 \forall sets A expressible in \mathcal{L}, A^{*} is expressible in \mathcal{L}
G2 \forall sets A expressible in $\mathcal{L}, \sim A$ is expressible in \mathcal{L}

Tarski's Theorem in the Abstract Framework

Recall
let $T:=\{g(S) \mid S \in \mathcal{T}\}$
$1(\sim T)^{*}$ is not nameable in \mathcal{L}
2 if G1 holds, then $\sim T$ is not nameable in \mathcal{L}
3 if G1 \& G2 hold, then T is not nameable in \mathcal{L}

Tarski's Theorem in the Abstract Framework

Recall
let $T:=\{g(S) \mid S \in \mathcal{T}\}$
$1(\sim T)^{*}$ is not nameable in \mathcal{L}
2 if G1 holds, then $\sim T$ is not nameable in \mathcal{L}
3 if G1 \& G2 hold, then T is not nameable in \mathcal{L}

Discussion (2)
observe that

Tarski's Theorem in the Abstract Framework

Recall

let $T:=\{g(S) \mid S \in \mathcal{T}\}$
$1(\sim T)^{*}$ is not nameable in \mathcal{L}
2 if G 1 holds, then $\sim T$ is not nameable in \mathcal{L}
3 if G1 \& G2 hold, then T is not nameable in \mathcal{L}

Discussion (2)

observe that
1 property $G 1$ is expressed by Lemma (1) and property $G 2$ is trivial for the set of Arithmetic sentences

Tarski's Theorem in the Abstract Framework

Recall

let $T:=\{g(S) \mid S \in \mathcal{T}\}$
$1(\sim T)^{*}$ is not nameable in \mathcal{L}
2 if G 1 holds, then $\sim T$ is not nameable in \mathcal{L}
3 if G1 \& G2 hold, then T is not nameable in \mathcal{L}

Discussion (2)

observe that
1 property $G 1$ is expressed by Lemma (1) and property $G 2$ is trivial for the set of Arithmetic sentences
2 Theorem (1) is the second part of the Diagonal Lemma

Tarski's Theorem in the Abstract Framework

Recall

let $T:=\{g(S) \mid S \in \mathcal{T}\}$
$1(\sim T)^{*}$ is not nameable in \mathcal{L}
2 if G1 holds, then $\sim T$ is not nameable in \mathcal{L}
3 if $\mathrm{G} 1 \& \mathrm{G} 2$ hold, then T is not nameable in \mathcal{L}

Discussion (2)

observe that
1 property $G 1$ is expressed by Lemma (1) and property $G 2$ is trivial for the set of Arithmetic sentences
2 Theorem (1) is the second part of the Diagonal Lemma
thus Tarski's Theorem for \mathcal{L}_{E} is nothing but an instance of the abstract form of Tarski's Theorem

The Axiom System PE

Definition (Propositional Logic)

$$
\begin{array}{ll}
L_{1}: & F \rightarrow(G \rightarrow F) \\
L_{2}: & F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H) \\
L_{3}: & (\neg F \rightarrow \neg G) \rightarrow(G \rightarrow F)
\end{array}
$$

The Axiom System PE

Definition (Propositional Logic)

$$
\begin{array}{ll}
L_{1}: & F \rightarrow(G \rightarrow F) \\
L_{2}: & F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H) \\
L_{3}: & (\neg F \rightarrow \neg G) \rightarrow(G \rightarrow F)
\end{array}
$$

Definition (First-Order Logic with Identity)

$$
\begin{array}{ll}
L_{4}: & \forall v_{i}(F \rightarrow G) \rightarrow\left(\forall v_{i} F \rightarrow \forall v_{i} G\right) \\
L_{5}: & F \rightarrow \forall v_{i} F \\
L_{6}: & \exists v_{i}\left(v_{i}=t\right) \\
L_{7}: & v_{i}=t \rightarrow\left(X_{1} v_{i} X_{2} \rightarrow X_{1} t X_{2}\right)
\end{array}
$$

where v_{i} doesn't occur in F or in t and X_{1}, X_{2} are expressions, such that $X_{1} v_{i} X_{2}$ is an atom

The Axiom System PE (cont'd)

Definition (Axioms of Arithmetic)

$$
\begin{array}{ll}
N_{1}: & v_{1}^{\prime}=v_{2}^{\prime} \rightarrow v_{1}=v_{2} \\
N_{2}: & \overline{0} \neq v_{1}^{\prime} \\
N_{3}: & \left(v_{1}+\overline{0}\right)=v_{1} \\
N_{4}: & \left(v_{1}+v_{2}^{\prime}\right)=\left(v_{1}+v_{2}\right)^{\prime} \\
N_{5}: & \left(v_{1} \cdot \overline{0}\right)=\overline{0} \\
N_{6}: & \left(v_{1} \cdot v_{2}^{\prime}\right)=\left(\left(v_{1} \cdot v_{2}\right)+v_{1}\right) \\
N_{7}: & \left(v_{1} \leqslant \overline{0}\right) \leftrightarrow\left(v_{1}=\overline{0}\right) \\
N_{8}: & \left(v_{1} \leqslant v_{2}^{\prime}\right) \leftrightarrow\left(v_{1} \leqslant v_{2} \vee v_{1}=v_{2}^{\prime}\right) \\
N_{9}: & \left(v_{1} \leqslant v_{2}\right) \vee\left(v_{2} \leqslant v_{1}\right) \\
N_{10}: & \left(v_{1} \exp \overline{0}\right)=\overline{0}^{\prime} \\
N_{11}: & \left(v_{1} \exp v_{2}^{\prime}\right)=\left(\left(v_{1} \exp v_{2}\right) \cdot v_{1}\right)
\end{array}
$$

The Axiom System PE (cont'd)

Definition (Induction Schema)
1 let $F\left(v_{1}\right)$ denote a formula with a free variable v_{1}

The Axiom System PE (cont'd)

Definition (Induction Schema)
1 let $F\left(v_{1}\right)$ denote a formula with a free variable v_{1}
2 let $F\left[v_{1}^{\prime}\right]$ denote any of

$$
\forall v_{i}\left(v_{i}=v_{1}^{\prime} \rightarrow \forall v_{1}\left(v_{1}=v_{i} \rightarrow F\right)\right.
$$

where v_{i} doesn't occur in F

The Axiom System PE (cont'd)

Definition (Induction Schema)
1 let $F\left(v_{1}\right)$ denote a formula with a free variable v_{1}
2 let $F\left[v_{1}^{\prime}\right]$ denote any of

$$
\forall v_{i}\left(v_{i}=v_{1}^{\prime} \rightarrow \forall v_{1}\left(v_{1}=v_{i} \rightarrow F\right)\right.
$$

where v_{i} doesn't occur in F
then

$$
N_{12}: \quad F[\overline{0}] \rightarrow\left(\forall v_{1}\left(F\left(v_{1}\right) \rightarrow F\left[v_{1}^{\prime}\right]\right) \rightarrow \forall v_{1} F\left(v_{1}\right)\right)
$$

The Axiom System PE (cont'd)

Definition (Induction Schema)
1 let $F\left(v_{1}\right)$ denote a formula with a free variable v_{1}
2 let $F\left[v_{1}^{\prime}\right]$ denote any of

$$
\forall v_{i}\left(v_{i}=v_{1}^{\prime} \rightarrow \forall v_{1}\left(v_{1}=v_{i} \rightarrow F\right)\right.
$$

where v_{i} doesn't occur in F
then

$$
N_{12}: \quad F[\overline{0}] \rightarrow\left(\forall v_{1}\left(F\left(v_{1}\right) \rightarrow F\left[v_{1}^{\prime}\right]\right) \rightarrow \forall v_{1} F\left(v_{1}\right)\right)
$$

Definition (Inference Rules)

$$
\frac{F \rightarrow G \quad F}{G} \text { Modus Ponens } \quad \frac{F}{\forall v_{i} F} \text { Generalisation }
$$

